Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ.docx
Скачиваний:
132
Добавлен:
16.03.2015
Размер:
2.64 Mб
Скачать

5.Общетеоретические положения

Когерентность излучения.Понятие когерентности в оптике вводится для характеристики согласованности (корреляции) световых колебаний в различных точках пространства и в различные моменты времени. Определим степень когерентности посредством корреляционной функции светового поля.

Рассмотрим поляризованное поле, вектор напряженности электрического поля E которого колеблется в определенном направлении. Если вектор напряженности оптического поля содержит компоненту, случайным образом изменяющуюся по пространственным координатам r и по времени t , то можно построить следующую корреляционную функцию

где угловые скобки означают усреднение по всему пространству и по всему интервалу времени наблюдения. Для стационарных полей, статистические характеристики которых во времени не меняются,

Принято выделять также статистически однородные поля, для которых корреляционная функция зависит лишь от разности r2- r1

Однородное случайное поле называется изотропным, если корреляционная функция зависит лишь от абсолютного значения расстояния между двумя точками s =|r2− r1| . Для стационарных во времени и однородных в пространстве случайных полей

где τ = t2− t1. Корреляционная функция B(s,τ) принимает максимальное значение при s = τ = 0 .

Введем применительно к световому пучку нормированную корреляционную функцию

где I (r1,t1) и I (r2,t2) - интенсивности излучения в указанных пространственных точках и в указанные моменты времени. В случае стационарности поля светового пучка

Рис. 6.1. Корреляционная функция. Свойства

Построенную таким образом величину γ называют комплексной степенью когерентности, так как корреляционные функции в общем случае комплексны.

Абсолютную величину γ называют модулем степени когерентности или просто степенью когерентности. Степень когерентности всегда удовлетворяет неравенству

|γ| при τ = 0 дает значение степени пространственной когерентности, а при r2= r1- значение степени временной когерентности. Значение s = skи τ = τk, при которых степень пространственной и временной когерентности уменьшаются в заданное число раз называются соответственно размером зоны когерентности и временем когерентности.

6.Значение теоремы и следствия из нее .

Теорема Ван Циттерта-Цернике.

Эта теорема является одной из наиболее важных теорем современной оптики. Она позволяет найти взаимную интенсивность и комплексную степень когерентности для двух точек экрана, освещаемого протяженным квазимонохроматическим источником. Теорема показывает, как происходит преобразование поперечной корреляционной функции светового пучка в процессе распространения.

Из теоремы следует, что поперечный радиус корреляции частично когерентного волнового пучка в процессе распространения за счет дифракции увеличивается.

Будем считать, что свет является квазимонохроматическим. Мы знаем, что взаимная интенсивность распространяется в соответствии с законом

который справедлив для различной степени когерентности, характеризуемой взаимной интенсивностью J(P1,P2).

Для некогерентного источника с точностью до константы

Взаимная интенсивность получается, используя "избирательные" свойства δ -функции.

Чтобы упростить это выражение, примем некоторые предположения и приближения.

1.Размеры источника и области наблюдения намного меньше расстояния z, от источника до плоскости наблюдения, тогда

Тогда выражение для взаимной интенсивности в наблюдаемой области

Рис. 6.5. К выводу теоремы Ван Циттерта-Цернике

Далее, предполагая, что плоскости источника излучения и наблюдения параллельны и учитывая параксиальное приближение

Вводя обозначения Δx=x2−x1, Δy=y2−y1, и, принимая во внимание, что I(ξ,η) = 0 для области вне источника Σ, окончательно получим

где фазовый множитель

ρ1 и ρ2 - расстояния от точек (x1,y1) и (x1,y2) до оптической оси.

В нормированном виде теорема принимает

Если выполняется равенство

Значение теоремы и следствия из нее. Теорема Ван Циттерта- Цернике, может быть сформулирована следующим образом: с точностью до множителя exp(-jΨ) и масштабных постоянных взаимную интенсивность J(x1,y1;x2,y2) можно найти, выполнив двумерное преобразование Фурье распределения интенсивности I(ξ,η) по поверхности источника.

Следует также обратить внимание, что |γ| зависит только от разности координат (Δx, Δy).

Поскольку множитель exp(-jψ) может быть опущен в случаях:

1.

2. Если точки Q1и Q2находятся на одинаковом расстоянии от оптической оси то фаза ψ = 0.

3. Если отверстия лежат не на плоскости, а на сфере радиусом z с центром на источнике.