Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
1
Добавлен:
20.04.2023
Размер:
1.94 Mб
Скачать

Сначала про угол между векторами. Думаю, всем интуитивно понятно, что такое угол между векторами, но на всякий случай чуть подробнее. Рассмотрим свободные ненулевые векторы и . Если отложить данные векторы от произвольной точки М, то получится картинка, которую многие уже представили мысленно:

Признаюсь, здесь я обрисовал ситуацию только на уровне понимания. Если необходимо строгое определение угла между векторами, пожалуйста, обратитесь к учебнику, для практических же задач оно нам, в принципе, ни к чему. Также ЗДЕСЬ И ДАЛЕЕ я буду местами игнорировать нулевые векторы ввиду их малой практической значимости. Оговорку сделал специально для продвинутых посетителей сайта, которые могут меня упрекнуть в теоретической неполноте некоторых последующих утверждений.

Угол между векторами может принимать значения от 0 до 180 градусов (от 0 до радиан) включительно. Аналитически данный факт записывается в виде двойного неравенства: либо (в радианах).

В литературе значок угла часто пропускают и пишут просто . Определение: Скалярным произведением двух векторов и называется

ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними:

Вот это вот уже вполне строгое определение. Акцентируем внимание на существенной информации:Обозначение: скалярное произведение обозначается через или просто . Результат операции является ЧИСЛОМ: Умножается вектор на вектор, а получается число. Действительно, если длины векторов – это числа, косинус угла – число, то их произведение тоже будет числом.

Практическая работа. Многогранники

Обозначения: V — объем;

Sполн — площадь полной поверхности;

Sбок — площадь боковой поверхности; Sо — площадь основания;

Pо — периметр основания;

Pо — периметр перпендикулярного сечения; l — длина ребра;

h — высота.

Формула Эйлера

N − L + F = 2

N — число вершин, L — число ребер, F — число граней выпуклого многогранника.

Призма — многранник, две грани которого — равные многоугольники, расположенные в параллельных плоскостях, а остальные — параллелограммы.

51

Параллелепипед — призма, основание которой — параллелограмм. Параллелепипед имеет шесть граней и все они — параллелограммы.

Пирамида — многранник, у которого одна грань n-угольник — основание пирамиды, а остальные боковые грани — треугольники с общей вершиной — вершиной пирамиды.

где k — апофема

Если в пирамиде провести сечение параллельное основанию, то тело, ограниченное этим сечением, основанием, и заключенной между ними боковой поверхностью пирамиды, называется усеченной пирамидой.

где S1 и S2 — площади оснований

52

где α — двугранный угол при ребре нижнего основания.

Практическая работа. Тела вращения: цилиндр, конус, шар. Объемы тел вращения.

Шар — геометрическое тело, ограниченное поверхностью, все точки которой находятся на данном расстоянии от центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой.

Площадь поверхности S и объём V шара радиуса r определяются формулами: S = 4πr2

S = πd2

Цилиндр (греч. kýlindros, валик, каток) — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра); причём если оснований два, то одно получено из другого параллельным переносом вдоль образующей боковой поверхности цилиндра; и основание пересекает каждую образующую боковой поверхности ровно один раз.

Площадь боковой поверхности

Площадь боковой поверхности тел вращения вычисляется по их развёртке. Развёртка цилиндра представляет собой прямоугольник с высотой h и длиной 2πR, следовательно площадь боковой поверхности цилиндра равна площади его развёртки и вычисляется по формуле:

Sb = 2πRh

Площадь полной поверхности Площадь полной поверхности цилиндра равна сумме площадей его боковой поверхности и его оснований:

Sp = 2πR(h + R)

Объём прямого кругового цилиндра

Возьмём плоскую фигуру, образованную следующими прямыми: y = R,x = 0,x = h,y = 0 и будем вращать её вокруг оси Ox. Таким образом мы получаем тело

53

вращения, образованное вращением прямоугольника вокруг одной из его сторон, то есть цилиндр. Объём может быть найден согласно формуле:

Конус — тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Далее будет рассматриваться именно этот случай, если не оговорено обратное. Если основание конуса представляет собой многоугольник, конус становится пирамидой.

Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.

Телесный угол при вершине прямого кругового конуса равен

где — угол раствора конуса (то есть удвоенный угол между осью конуса и любой прямой на его боковой поверхности).

Площадь боковой поверхности такого конуса равна

где — радиус основания, — длина образующей.

Объем кругового конуса равен

Раздел 6. Информатика и информационные процессы. Техника безопасности и гигиенические требования при

использовании ИКТ технологии. Роль информатики в сфере искусств и культуры.

Понятие информации. Информационные процессы. Универсальность дискретного (цифрового) представления информации. Двоичное представление информации. Количество информации. Подсчет информационного объема.

Особенности запоминания, обработки и передачи информации человеком. Организация личной информационной среды. Защита информации.

Этические и правовые нормы информационной деятельности человека.

54

Цель: - сформировать представление о роли информатики в современном обществе и об информационной безопасности, сформировать навыки подсчета информационного объема.

Термин информатика возник в 60-х гг. во Франции для названия области, занимающейся автоматизированной обработкой информации с помощью электронных вычислительных машин. Французский термин informatigue (информатика) образован путем слияния слов information (информация) и automatigue (автоматика) и означает «информационная автоматика или автоматизированная переработка информации». В англоязычных странах этому термину соответствует синоним computer science (наука о компьютерной технике).

Выделение информатики как самостоятельной области человеческой деятельности в первую очередь связано с развитием компьютерной техники. Причем основная заслуга в этом принадлежит микропроцессорной технике, появление которой в середине 70-х гг. послужило началом второй электронной революции. С этого времени элементной базой вычислительной машины становятся интегральные схемы и микропроцессоры, а область, связанная с созданием и использованием компьютеров, получила мощный импульс в своем развитии. Термин «информатика» приобретает новое дыхание и используется не только для отображения достижений компьютерной техники, но и связывается с процессами передачи и обработки информации.

Внашей стране подобная трактовка термина «информатика» утвердилась

смомента принятия решения в 1983 г. на сессии годичного собрания Академии наук СССР об организации нового отделения информатики, вычислительной техники и автоматизации. Информатика трактовалась как «комплексная научная и инженерная дисциплина, изучающая все аспекты разработки, проектирования, создания, оценки, функционирования основанных на ЭВМ систем переработки информации, их применения и воздействия на различные области социальной практики».

Информатика в таком понимании нацелена на разработку общих методологических принципов построения информационных моделей. Поэтому методы информатики применимы всюду, где существует возможность описания объекта, явления, процесса и т.п. с помощью информационных моделей.

Существует множество определений информатики, что связано с многогранностью ее функций, возможностей, средств и методов. Обобщая опубликованные в литературе по информатике определения этого термина, предлагаем такую трактовку.

Информатика – это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и их взаимодействием со средой применения.

Часто возникает путаница в понятиях «информатика» и «кибернетика». Попытаемся разъяснить их сходство и различие.

55

Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.

Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и др.

Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Поэтому может сложиться впечатление об информатике как о более емкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники, что, несомненно, сужает ее, казалось бы, обобщающий характер. Между этими двумя дисциплинами провести четкую границу не представляется возможным в связи с ее размытостью и неопределенностью, хотя существует довольно распространенное мнение, что информатика является одним из направлений кибернетики.

Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без нее. Кибернетика же развивается сама по себе, строя различные модели управления объектами, хотя и очень активно использует все достижения компьютерной техники. Кибернетика и информатика, внешне очень похожие дисциплины, различаются, скорее всего, в расстановке акцентов:

винформатике – на свойствах информации и аппаратно-программных средствах ее обработки;

вкибернетике – на разработке концепций и построении моделей объектов

сиспользованием, в частности, информационного подхода.

Информатика — отнюдь не только «чистая наука». У нее, безусловно, имеется научное ядро, но важная особенность информатики — широчайшие приложения, охватывающие почти все виды человеческой деятельности: производство, управление, науку, образование, проектные разработки, торговлю, финансовую сферу, медицину, криминалистику, охрану окружающей среды и др. И, может быть, главное из них — совершенствование социального управления на основе новых информационных технологий.

Как наука, информатика изучает общие закономерности, свойственные информационным процессам (в самом широком смысле этого понятия). Когда разрабатываются новые носители информации, каналы связи, приемы кодирования, визуального отображения информации и многое другое, то конкретная природа этой информации почти не имеет значения. Для разработчика системы управления базами данных (СУБД) важны общие принципы организации и эффективность поиска данных, а не то, какие конкретно данные будут затем заложены в базу многочисленными пользователями. Эти общие закономерности есть предмет информатики как науки.

56

Объектом приложений информатики являются самые различные науки и области практической деятельности, для которых она стала непрерывным источником самых современных технологий, называемых часто «новые информационные технологии». Многообразные информационные технологии, функционирующие в разных видах человеческой деятельности (управлении производственным процессом, проектировании, финансовых операциях, образовании и т.п.), имея общие черты, в то же время существенно различаются между собой.

Перечислим реализации информационных технологий используя, ставшие традиционными, сокращения.

АСУ — автоматизированные системы управления — комплекс технических и программных средств, которые во взаимодействии с человеком организуют управление объектами в производстве или общественной сфере.

АСУТП — автоматизированные системы управления технологическими процессами. Например, такая система управляет работой станка с числовым программным управлением (ЧПУ), процессом запуска космического аппарата и т.д.

АСНИ — автоматизированная система научных исследований — программно-аппаратный комплекс, в котором научные приборы сопряжены с компьютером, вводят в него данные измерений автоматически, а компьютер производит обработку этих данных и представление их в наиболее удобной для исследователя форме.

АОС — автоматизированная обучающая система. Есть системы, помогающие учащимся осваивать новый материал, производящие контроль знаний, помогающие преподавателям готовить учебные материалы и т.д.

САПР — система автоматизированного проектирования — программноаппаратный комплекс, который во взаимодействии с человеком (конструктором, инженером-проектировщиком, архитектором и т.д.) позволяет максимально эффективно проектировать механизмы, здания, узлы сложных агрегатов и др.

Упомянем также диагностические системы в медицине, системы организации продажи билетов, системы ведения бухгалтерско-финансовой деятельности,

системы обеспечения редакционно-издательской деятельности — спектр применения информационных технологий чрезвычайно широк.

С развитием информатики возникает вопрос о ее взаимосвязи и разграничении с кибернетикой. При этом требуется уточнение предмета кибернетики, более строгое его толкование. Информатика и кибернетика имеют много общего, основанного на концепции управления, но имеют и объективные различия. Один из подходов разграничения информатики и кибернетики — отнесение к области информатики исследований информационных технологий не в любых кибернетических системах (биологических, технических и т.д.), а только в социальных системах. В то время как за кибернетикой сохраняются исследования общих законов движения информации в произвольных системах,

57

информатика, опираясь на этот теоретический фундамент, изучает конкретные способы и приемы переработки, передачи, использования информации. Впрочем, многим современным ученым такое разделение представляется искусственным, и они просто считают кибернетику одной из составных частей информатики.

Структура информатики Опишем составные части современной информатики. Каждая из этих

частей может рассматриваться как относительно самостоятельная научная дисциплина; взаимоотношения между ними примерно такие же, как между алгеброй, геометрией и математическим анализом в классической математике

— все они хоть и самостоятельные дисциплины, но, несомненно, части одной науки.

Теоретическая информатика — часть информатики, включающий ряд математических разделов. Она опирается на математическую логику и включает такие разделы как теория алгоритмов и автоматов, теория информации и теория кодирования, теория формальных языков и грамматик, исследование операций и другие. Этот раздел информатики использует математические методы для общего изучения процессов обработки информации.

Вычислительная техника — раздел, в котором разрабатываются общие принципы построения вычислительных систем. Речь идет не о технических деталях и электронных схемах (это лежит за пределами информатики как таковой), а о принципиальных решениях на уровне, так называемой, архитектуры вычислительных (компьютерных) систем, определяющей состав, назначение, функциональные возможности и принципы взаимодействия устройств.

Программирование — деятельность, связанная с разработкой систем программного обеспечения. Здесь отметим лишь основные разделы современного программирования: создание системного программного обеспечения и создание прикладного программного обеспечения. Среди системного — разработка новых языков программирования и компиляторов к ним, разработка интерфейсных систем (пример — общеизвестная операционная оболочка и система Windows). Среди прикладного программного обеспечения общего назначения самые популярные — системы обработки текстов, электронные таблицы (табличные процессоры), системы управления базами данных. В каждой области предметных приложений информатики существует множество специализированных прикладных программ более узкого назначения.

Информационные системы — раздел информатики связанный с решением вопросов по анализу потоков информации в различных сложных системах, их оптимизации, структурированию, принципах хранения и поиска информации. Информационно-справочные системы, информационнопоисковые системы, гигантские современные глобальные системы хранения и

58

поиска информации (включая широко известный Internet) в последнее десятилетие XX века привлекают внимание все большего круга пользователей.

Искусственный интеллект — область информатики, в которой решаются сложнейшие проблемы, находящиеся на пересечении с психологией, физиологией, лингвистикой и другими науками. Как научить компьютер мыслить подобно человеку? Поскольку мы далеко не все знаем о том, как мыслит человек, исследования по искусственному интеллекту, несмотря на полувековую историю, все еще не привели к решению ряда принципиальных проблем. Основные направления разработок, относящихся к этой области – моделирование рассуждений, компьютерная лингвистика, машинный перевод, создание экспертных систем, синтез и анализ сообщений на естественных языках, распознавание образов и другие. От успехов работ в области искусственного интеллекта зависит, в частности, решение такой важнейшей прикладной проблемы как создание интеллектуальных интерфейсных систем взаимодействия человека с компьютером, благодаря которым это взаимодействие будет походить на общение между людьми и станет более эффективным.

Специфика и значение информатики как отрасли производства состоят в том, что от нее во многом зависит рост производительности труда в других отраслях народного хозяйства. Более того, для нормального развития этих отраслей производительность труда в самой информатике должна возрастать более высокими темпами, так как в современном обществе информация все чаще выступает как предмет конечного потребления: людям необходима информация о событиях, происходящих в мире, о предметах и явлениях, относящихся к их профессиональной деятельности, о развитии науки и самого общества. Дальнейший рост производительности труда и уровня благосостояния возможен лишь на основе использования новых интеллектуальных средств и человеко-машинных интерфейсов, ориентированных на прием и обработку больших объемов мультимедийной информации (текст, графика, видеоизображение, звук, анимация). При отсутствии достаточных темпов увеличения производительности труда в информатике может произойти существенное замедление роста производительности труда во всем народном хозяйстве. В настоящее время около 50% всех рабочих мест в мире поддерживается средствами обработки информации.

Информатика как фундаментальная наука занимается разработкой методологии создания информационного обеспечения процессов управления любыми объектами на базе компьютерных информационных систем. Существует мнение, что одна из главных задач этой науки – выяснение, что такое информационные системы, какое место они занимают, какую должны иметь структуру, как функционируют, какие общие закономерности им свойственны. В Европе можно выделить следующие основные научные направления в области информатики: разработка сетевой структуры, компьютерно-интегрированные производства, экономическая и медицинская

59

информатика, информатика социального страхования и окружающей среды, профессиональные информационные системы.

Цель фундаментальных исследований в информатике – получение обобщенных знаний о любых информационных системах, выявление общих закономерностей их построения и функционирования.

Информатики как прикладная дисциплина занимается:

изучением закономерностей в информационных процессах (накопление, переработка, распространение);

созданием информационных моделей коммуникаций в различных областях человеческой деятельности;

разработкой информационных систем и технологий в конкретных областях и выработкой рекомендаций относительно их жизненного цикла: для этапов проектирования и разработки систем, их производства, функционирования и т.д.

Главная функция информатики заключается в разработке методов и средств преобразования информации и их использовании в организации технологического процесса переработки информации.

Задачи информатики состоят в следующем:

исследование информационных процессов любой природы;

разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;

решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.

Информатика существует не сама по себе, а является комплексной научно-технической дисциплиной, призванной создавать новые информационные техники и технологии для решения проблем в других областях.

Задания для самостоятельной работы: Подготовить сообщения по темам:

1.Роль информатики в искусстве и культуры

2.Использование информатики в дизайне

3.Этические и правовые нормы информационной деятельности человека http://www.metod-kopilka.ru/page-4-1-12-9.html

Часто приходится слышать, что сообщение или несет мало информации или, наоборот, содержит исчерпывающую информацию. При этом разные люди, получившие одно и то же сообщение (например, прочитав статью в газете), по-разному оценивают количество информации, содержащейся в нем. Это происходит оттого, что знания людей об этих событиях (явлениях) до получения сообщения были различными. Поэтому те, кто знал об этом мало, сочтут, что получили много информации, те же, кто знал больше, чем написано в статье, скажут, что информации не получили вовсе. Количество информации

60

Соседние файлы в папке из электронной библиотеки