Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции Кумыкова.doc
Скачиваний:
247
Добавлен:
09.02.2015
Размер:
19.51 Mб
Скачать

Примеры решения задач

1. В широкой части горизонтальной трубы вода течет со скоростью . Определить скорость течения воды в узкой части трубы, если разность давлений в широкой и узкой ее частях равна

Решение:

Запишем уравнение Бернулли

Формула Пуазейля

Наибольшей скоростью обладают частицы, движущиеся вдоль оси трубы; самый близкий к трубе слой жидкости неподвижен.

Для установления зависимости выделим мысленно цилиндрический объем жидкости радиусаrи длиныl. На торцах этого цилиндра поддерживаются давленияP1иP2, что обуславливает результирующую силу.

(1)

На боковую поверхность цилиндра со стороны окружающего слоя жидкости действует сила внутреннего трения, равная

(2)

Где - площадь боковой поверхности цилиндра.

F=Fтр(3)

Знак (-), так как (4)

Проинтегрируем это уравнение:

(5)

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r=0):

Определим объемную скорость кровотока Q. Для этого выделим цилиндрический слой радиусомrи толщинойdr. Площадь сечения этого слоя. За 1с слой переносит объем жидкости(6)

(5)(6) получим(7)

(7) - Формула Пуазейля

Через трубу протекает тем больше жидкости , чем меньше ее вязкость и больше радиус трубы.

Формула Пуазейля аналогична закону Ома для участка цепи. Разность потенциалов соответствует разности давлений на концах трубы, сила тока - объемной скорости, электрическое сопротивление - гидравлическому сопротивлению

(8)

Гидравлическое сопротивление тем больше, чем больше вязкость , длинаlтрубы и меньше сечение.

Примеры решения задач

  1. При чуме артерия сужается в 2 раза . Во сколько раз изменится объемная скорость кровотока?

Решение

По формуле Пуазейля

  1. Каково гидравлическое сопротивление кровеносного сосуда длиной 0,12м и радиусом 0,1мм?

Решение: Из формулы (8) для гидравлического сопротивления

3.Модель кровообращения Франка

Модель позволяет установить связь между ударным объемом крови (объем крови, выбрасываемый желудочком за одну систолу), гидравлическим сопротивлением периферической части системы кровообращения х0и изменением давления в артериях. Артериальная часть системы кровообращения моделируется упругим (эластичным) резервуаром (УР).

В УР (артерия) поступает кровь из сердца Q. От УР кровь оттекает с о.с.к.Q0в периферическую систему (артериолы, капилляры). Объем крови в УР зависит отP:

V=V0+kP(1)

Где k- упругость резервуара;V0-объем УР приP=0, из (1)

(2)

(3),

т.е. объемная скорость кровотока из сердца равна скорости возрастания объема УР скорости оттока крови из упругого резервуара.

На основании формулы Пуазейля и формулы (8) можно записать для периферии:

(4),

где P- давление в УР;Pв - венозное давление. ПриPв=0

(5)

Подставляя (2) и (5) в (3), получим

(6)

Во время систолы (сокращение сердца) происходит расширение УР, во время диастолы - отток крови к периферии, Q=0. Тогда (6) перепишется:

(7)

Проинтегрировав (9), получаем зависимость давления в УР после систолы от времени:

(8)

На основе механической модели по аналогии можно построить электрическую модель.

Здесь источник Uпеременного эл.напряжения служит аналогом сердца, выпрямитель В - сердечного клапана.

Конденсатор С в течение полупериода накапливает заряд, а затем разряжается на резистор R, так сглаживается сила тока через резистор. Действия конденсатора аналогично действию упругого резервуара, который сглаживает колебание давления крови в артериях и капиллярах. Резистор является электрическим аналогом периферической сосудистой системы.

Пульсовая волна-это распространяющаяся по аорте и артериям волна повышенного давления, вызванная выбросом крови из левого желудочка в период систолы.

Скорость пульсовой волны в крупных сосудах определяется выражением:

, где Е-модуль упругости,- плотность вещества сосуда,h-толщина стенки сосуда,d-диаметр сосуда.