Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции По Физике Оптике Для Дневников (Переверзев В. Г

.).pdf
Скачиваний:
16
Добавлен:
07.10.2014
Размер:
1.94 Mб
Скачать

График результирующего колебания - график биений, т.е. почти гармонических колебаний частоты ω, амплитуда которых мед-

ленно меняется с частотой Δω.

Амплитуда из-за наличия знака модуля (амплитуда всегда > 0) частота с которой изменяется амплитуда, равна не Δω / 2, а в два раза выше - Δω.

14.3.4. Сложение взаимно-перпендикулярных колебаний

Пусть маленькое тело колеблется на взаимно-перпендикулярных пружинках одинаковой жесткости. По какой траектории будет двигаться это тело?

Это уравнения траектории в параметрическом виде.

Для получения явной зависимости между координатами x

и y надо из уравнений исключить параметр t.

Из первого уравнения:

; .

Из второго:

.

После подстановки:

.

Избавимся от корня:

 

.

- это уравнение эллипса.

Частные случаи:

1.

2.

3.

14.4. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

Рассмотрим колебания, происходящие в двух системах:

а) колебания заряда в колебательном контуре L,C, имеющем активное сопротивление R;

б) колебание грузика, прикрепленного к пружинке, учтем влияние трения на движение грузика.

14.4.1. Колеблющиеся системы

14.4.2. Законы движения

Закон Ома для неоднородного участка цепи (10.7):

Второй закон Ньютона (4.6):

14.4.3. Применение законов движения, с учетом особенности наших систем

Или, используя другое обозначение производной:

14.4.4. Введем обозначения:

14.4.5. Дифференциальное уравнение, описывающее затухающие колебания наших двух систем в этих обозначениях будет иметь один и тот же вид

.

14.4.6. Решение

Каким будет его решение? При (отсутствие сопротивления, трения) оно должно переходить в

(см. 14.2).

Наличие затухания, потерь энергии, переход ее из электромагнитной или механической в тепловую приведет к уменьшению амплитуды колебаний с течением времени, станет другой, меньшей чем ω0, и частота колебаний.

Предположим, что амплитуда убывает по экспоненциальному закону, т.е. A(t) = A0·e-βt(e=2,71828...),

тогда решение будем искать в виде:

.

14.4.7. Проверка

Выясним, при каких условиях эта функция будет решением, для этого найдем

и подставим в дифференциальное уравне-

ние.

 

Сгруппируем члены с косинусом и синусом, на A0e-βt сократим:

.

Для тождественного обращения левой части в ноль надо, что бы коэффициент при косинусе обращался в ноль (коэффициент

при синусе обратился в ноль, т.к. мы "удачно" выбрали A(t) = A0-βt). Из этого требования следует выражение для - ωчастоты затухающих колебаний.