Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции По Физике Оптике Для Дневников (Переверзев В. Г

.).pdf
Скачиваний:
16
Добавлен:
07.10.2014
Размер:
1.94 Mб
Скачать

Используя закон преломления

(17.1.3.),

получим формулу, определяющую угол Брюстера:

.

При выполнении условия Брюстера i + r = π/2, тогда из формулы Френеля для получим:

Таким образом, при выполнении условия Брюстера, отраженный свет будет полностью поляризован в плоскости, пер-

пендикулярной плоскости падения.

Это утверждение носит название закона Брюстера.

Закон Брюстера имеет простое объяснение. Отраженная световая волна появляется за счет излучения электронов среды, совер-

шающих вынужденные колебания под действием вектора преломленной волны. Это излучение имеет направленный характер (16.4.2.3): его интенсивность равна нулю в направлении колебаний зарядов. Направим под углом Брюстера на границу раздела

плоско поляризованную волну с вектором , лежащим в плоскости падения.

На рисунке изображена диаграмма направленности излучения, возбужденного вектором . Нулевой минимум этой диаграммы при выполнении условия Брюстера совпадает по направлению с отраженным лучом.

Если вектор падающей волны направить перпендикулярно плоскости падения (рисунок ниже), то направление колебаний электронов будет перпендикулярно плоскости падения. Тогда диаграмма направленности будет развернута своим максимумом в направлении отраженного луча (рисунок ниже). Напомним, что пространственная форма диаграммы похожа на бублик без дырки (16.4.2.3).

20.6. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ

Как уже упоминалось в (17.1.2.), закон преломления может не выполняться в анизотропных средах. Действительно, этот закон утверждает, что:

, где n1 и n2 - постоянные для данных веществ величины.

Но

(19.3.2),

где E0 - напряженность электрического поля в вакууме, а E- в веществе. Поле в веществе E < E0, т.к. диэлектрик поляризует-

ся и создает поле E', направленное навстречу E0. В свою очередь поле E'пропорционально вектору поляризации (9.13.3), а величина вектора пропорциональна сумме дипольных моментов молекул (9.13.2). Дипольный же момент – это произведение заряда qна расстояние между зарядами r(9.13.1.1.). Если молекула несимметрична, то величина ее дипольного момента зави-

сит от ее ориентации относительно вектора напряженности электрического поля. Следовательно, показатель преломления nбу-

дет зависеть от направления вектора световой волны. В этом и состоит нарушение закона преломления.

20.6.1. Модель двояко преломляющего кристалла

Рассмотрим модель кристаллического вещества, в котором "молекулы" в форме эллипсоидов вращения хорошо поляризуются вдоль одной оси. Назовем эту ось оптической осью "кристалла". В направлениях, перпендикулярных этой оси (рисунок ниже), "молекулы" поляризуются хуже.

Направим на этот "кристалл" перпендикулярно оптической оси два плоско поляризованных луча света. Пусть у одного луча вектор 1 перпендикулярен длинной оси "молекул" - оптической оси "кристалла", а у другого 2 параллелен оптической оси. По-

казатели преломления для этих лучей будут разные. В силу приведенных выше рассуждений n1 < n2. Лучи 1 и 2 после прохож-

дения кристалла толщиной dприобретут оптическую разность хода:

.

С этой разностью хода связана разность фаз (18.1.2.2):

.

При изменении плоскости поляризации света показатель преломления будет изменяться от n1 до n2, т. е. n ≠ const! Направим теперь на наш "кристалл" плоско поляризованный свет, распространяющийся вдоль оптической оси. В силу симметрии "молекул" в плоскости, перпендикулярной оптической оси, показатель преломления теперь не будет зависеть от направле-

ния вектора . В данной ситуации при любом своем направлении вектор остается перпендикулярным длинной оси молекул (оптической оси "кристалла"), следовательно, n = const = n1.

Главным сечением кристалла называют любую плоскость, проходящую через его оптическую ось. Если вектор световой волны перпендикулярен главному сечению, то показатель преломления n = const = n1 (лучи 1 и 3 на верхнем рисунке).

20.6.1.1. НЕОБЫКНОВЕННЫЙ И ОБЫКНОВЕННЫЙ ЛУЧ

Направим на наш кристалл под произвольным углом к оптической оси световую волну с вектором , лежащим в главном сечении (рисунок ниже). Пусть верхняя грань кристалла будет параллельна оптической оси.

При изменении угла падения iугол преломления rбудет изменяться, но отношение

.

Это и есть нарушение закона преломления. Поэтому, такой луч называют необыкновенным, для него показатель преломления не является постоянной величиной, он зависит от направления распространения луча (т.к. с ним связана, в этом случае, ориен-

тация вектора относительно оптической оси кристалла). Максимальная величина показателя преломления обычно обозначается ne (у нас ne обозначено как n2).

Если вектор световой волны направить перпендикулярно главному сечению (см. рисунок в разделе (20.6.1), луч 1), то показатель преломления не будет зависеть от угла падения, т.е. закон преломления будет выполняться. Такой луч называют обыкно-

венным, а показатель преломления для этого луча обозначают обычно n0 (у нас n0 обозначено как n1).

21. ВЗАИМОДЕЙСТВИЕ СВЕТА С ВЕЩЕСТВОМ

При распространении света в веществе возникают следующие явления. Во-первых, изменяется скорость распространения, см. (16.5.2), причем, скорость распространения зависит от длины световой волны. Это явление называется дисперсией.

Во-вторых, часть энергии световой волны теряется. Это явление называется поглощением или абсорбцией света.

Наконец, при распространении света в оптически неоднородной среде возникает рассеяние света на пространственных неоднородностях среды.

21.1. ДИСПЕРСИЯ СВЕТА

Дисперсией света называют зависимость показателя преломления nот длины волны (или от частоты), т.е.

n= n(λ).

Упрозрачных веществ примерный вид зависимости изображен на следующем рисунке:

Такая зависимость n(λ), когда nуменьшается с ростом λназывается нормальной дисперсией. При прохождении белого света через призму свет разлагается в дисперсионный (призматический) спектр. Это явление впервые наблюдал И. Ньютон (1672 г.). Схема его опыта изображена на рисунке: