Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DO_ak_emmms.doc
Скачиваний:
23
Добавлен:
24.11.2019
Размер:
6.54 Mб
Скачать

Решение оптимизационной задачи линейного программирования в Excel

Пусть предприятие (например, мебельная фабрика) производит столы и стулья. Расход ресурсов на их производство и прибыль от их реализации представлены ниже:

СТОЛЫ

СТУЛЬЯ

ОБЪЕМ

РЕСУРСОВ

Расход древесины на изделие, м3

0,5

0,04

200

Расход труда,

чел-час

12

0,6

1800

Прибыль от реализации

единицы изделия, руб.

180

20

Кроме того, на производство 80 столов заключен контракт с муниципалитетом, который, безусловно, должен быть выполнен. Необходимо найти такую оптимальную производственную программу, чтобы прибыль от реализации продукции была максимальной.

Пусть x1 – количество столов;

х2 – количество стульев.

Тогда система ограничений и целевая функция запишутся следующим образом:

1 80x1 + 20х2 max (целевая функция );

0.5x1 + 0.04х2 200 (ограничения по древесине);

12x1 + 0.6х2 1800 (ограничения по труду);

x1 80 (контракт с муниципалитетом);

x1 0; х2 0;

x1, х2целые числа.

Для решения задачи в Excel запишем ее виде, представленном на рис. 3.4.

Рис. 3.4. Запись исходных данных для решения задачи линейной оптимизации

Для решения задачи вызовем меню Сервис-Поиск решения (Tools-Solver).

В открывшемся диалоговом окне Поиск решения (рис. 3.5.) укажем:

адрес целевой ячейки (в нашем примере D5);

диапазон искомых ячеек (А2:A3);

ограничения: А2>=80

A2:A3=целое

A2:A3>=0

В2<=D2

B3<=D3 .

Добавления, изменения и удаления ограничений производятся с помощью кнопок Добавить, Изменить, Удалить (Add, Change, Delete).

Для нахождения оптимального решения нажмем кнопку Выполнить (Solve). В результате в таблице получим значение целевой функции – 42400 млн руб. при x1 = 80 и x2 = 1400.

Рис. 3.5. Диалоговое окно Поиск решения

Диалоговое окно Результаты поиска решения позволяет (рис. 3.6.):

  • сохранить на текущем рабочем листе найденное оптимальное решение;

  • восстановить первоначальные значения;

  • сохранить сценарий;

  • выдать отчеты по результатам, устойчивости, пределам, необходимые для анализа найденного решения.

Рис.3.6. Рабочий лист с найденным оптимальным решением

Рис. 3.7. Диалоговое окно Результаты поиска решения

Если щелкнуть по кнопке ОК, то на месте исходной таблицы получим таблицу с найденными оптимальными значениями (см. рис. 3.7).

Как видно из результатов решения, предприятию производить столы не очень выгодно. Поэтому оно ограничило объем их выпуска в количестве, необходимом для выполнения контракта. Остальные ресурсы направлены на производство стульев.

Двойственная задача линейного програмирования

Двойственная задача линейного програмирования может быть сформулирована следующим образом:

Найти переменные yi (i=1,2,...m), при которых целевая функция была бы минимальной

,

не нарушая ограничений

Данная задача называется двойственной (симметричной) по отношению к прямой задаче, сформулированной во втором параграфе данной главы. Однако, правильным будет и обратное утверждение, т.к. обе задачи равноправны. Переменные двойственной задачи называются объективно обусловленными оценками.

Прямая и обратная задачи линейного програмирования связаны между собой теоремами двойственности.

Первая теорема двойственности. Если обе задачи имеют допустимые решения, то они имеют и оптимальное решение, причем значение целевых функций у них будет одинаково:

F(x)=Z(y) или .

Если же хотя бы одна из задач не имеет допустимого решения, то ни одна из них не имеет оптимального решения.

Вторая теорема двойственности (теорема о дополняющей нежесткости). Для того чтобы векторы были оптимальными решениями соответственно прямой и двойственной задачи, необходимо и достаточно, чтобы выполнялись следующие условия:

Следствие1. Пусть оптимальное значение некоторой переменной двойственной задачи строго положительно

.

Тогда из условия (1) получим:

или

Экономический смысл данных выражений можно интерпретировать в следующей редакции. Если объективно обусловленная оценка некоторого ресурса больше нуля (строго положительна), то этот ресурс полностью (без остатка) расходуется в процессе выполнения оптимального плана.

Следствие2. Пусть для оптимального значения некоторой переменной xi прямой задачи выполняется условие строгого неравенства

.

Тогда основываясь на том же первом условии (1) можно заключить, что yi=0.

Экономически это означает, что если в оптимальном плане какой-то ресурс используется не полностью, то его объективно обусловленная оценка обязательно равна нулю.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]