Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
iz_fom_foe.doc
Скачиваний:
89
Добавлен:
01.05.2019
Размер:
7.8 Mб
Скачать

1.3. Структура "металл-полупроводник"

1.3.1. Расчет вольт-амперной характеристики контакта "металл-полупроводник". Контакт "металл-полупроводник" может быть как омическим, так и выпрямляющим. Омические контакты металла с полупроводником являются обязательными элементами любого активного или пассивного полупроводникового прибора или устройства, так как они осуществляют электрическую связь между элементами прибора и внешней цепью, обусловленную линейной вольт-амперной характеристикой.

Выпрямляющие контакты "металл-полупроводник" используются для построения активных элементов на основе барьеров Шоттки и характеризуются нелинейной зависимостью тока, протекающего через контакт, от приложенного к нему напряжения.

Для идеального контакта "металл–полупроводник" высота барьера равна разности между работой выхода металла и электронным сродством полупроводника n-типа проводимости:

b = q (φm – æ),

где æ – сродство к электрону.

Высота барьера Шоттки b при идеальном контакте между металлом и полупроводником p-типа определяется аналогично

b = Egq (φm – æ).

Для данного полупроводника и любого металла сумма высот барьеров, образующихся при контакте металла с полупроводником n- и p-типа, должна быть равной ширине запрещенной зоны

q (φbn + φbp) = Eg.

Максимальное значение напряженности электрического поля E в полупроводнике рассчитывается по формуле

. (1.39)

Здесь W – толщина обедненного слоя полупроводника.

В условиях равновесия W определяется выражением

, (1.40)

где N – концентрация электрически активных примесей в полупроводнике.

При значительной толщине обедненного слоя W в приконтактной области полупроводника, а именно если

, (1.41)

где l – длина свободного пробега носителей заряда, справедлива диффузионная теория выпрямления.

Она приводит к следующему уравнению вольт-амперной характеристики выпрямляющего контакта полупроводника с металлом:

, (1.42)

где σ0 – удельная электропроводность полупроводника,

φb – высота барьера Шоттки.

Когда для контакта "металл–полупроводник" выполняется условие, обратное (1.36):

(1.43)

носители заряда, пролетая через обедненный слой, почти не рассеиваются решеткой полупроводника.

Теория выпрямления такого слоя называется диодной теорией. В этом случае уравнение вольт-амперной характеристики контакта полупроводника с металлом имеет вид

, (1.44)

где – постоянная Ричардсона.

Длина свободного пробега носителей заряда может быть определена из выражения

,

где μ – подвижность электронов или дырок в соответствующем полупроводнике; m* – эффективная масса носителей заряда.

1.3.2. Расчет вероятности туннелирования электрона сквозь барьер Шоттки. Для структуры "металл-полупроводник" распределение потенциальной энергии электрона в области барьера Шоттки можно считать треугольным и аппроксимировать функцией

E(x)=φbqEx, (1.45)

где φb – энергия (высота) барьера Шоттки. Тогда подстановка (1.40) в выражение для расчета вероятности квантовомеханического туннельного перехода электрона с энергией Е0 сквозь потенциальный барьер произвольной формы

(1.46)

позволяет получить выражение для расчета вероятности туннелирования электрона сквозь барьер Шоттки в виде

. (1.47)

В выражениях (1.46) и (1.47) m* – эффективная масса электронов в полупроводнике; DE = φb Е0 (Е0 – энергия электрона, туннелирующего из полупроводника в металл); – постоянная Планка; Eнапряженность электрического поля в полупроводнике, рассчитывается по формуле (1.39).

1.3.3. Барьерная емкость контакта "металл-полупроводник" определяется по формуле

[Ф], (1.48)

где S – площадь контакта "металл-полупроводник".

1.3.4. Порядок построения энергетических диаграмм контакта "металл-полупроводник". Для построения энергетической диаграммы контакта "металл-полупроводник" при заданном напряжении смещения U необходимо определить следующие электрофизические характеристики:

  • концентрацию примесей в полупроводнике;

  • величину объемного потенциала (φобn, φобp), позволяющую определить положение уровня Ферми в полупроводнике, используя формулы (1.5 а), (1.5 б), полагая, что концентрация основных носителей заряда равна концентрации донорной или (в зависимости от типа проводимости полупроводника) акцепторной примеси, т.е. и (атомы примеси полностью ионизированы);

  • величину высоты барьера Шоттки, используя справочные данные из прил. 6;

  • величину ширины области пространственного заряда в полупроводнике по формуле (1.40).

По полученным и исходным данным строится энергетическая диаграмма в следующем порядке.

1. Выбирается масштаб: по вертикали в эВ, по горизонтали в мкм или в нм (см. п. 1.2.8. Порядок построения энергетической диаграммы pn-перехода).

2. Проводится (произвольно) отрезок прямой линии, соответствующий положению уровня Ферми в металле, обозначается EfM.

3. Проводятся вертикальные пунктирные линии, обозначающие границы области пространственного заряда в полупроводнике, расстояние между ними равно рассчитанному значению W.

4. Проводится отрезок прямой линии, соответствующий уровню Ферми в полупроводнике, таким образом, чтобы он совпадал с линией уровня Ферми в металле (т.к. контакт "металл-полупроводник" в равновесии), обозначается Efр или Efn.

5. На расстоянии, равном величине рассчитанного объемного потенциала, выше (в случае, если полупроводник р-типа) или ниже (в случае, если полупроводник n -типа) от уровня Ферми проводится отрезок прямой линии, соответствующий середине запрещенной зоны полупроводника, обозначается Ei.

6. Параллельно линии Ei на расстояниях, равных половине величины запрещенной зоны полупроводника Eg/2 проводятся отрезки прямых линий:

- выше Ei – линия уровня дна зоны проводимости, обозначаемая Ec,

- ниже Ei – линия уровня потолка валентной зоны, обозначаемая Ev.

7. На границе раздела "металл-полупроводник" от уровня Ферми в металле проводится вертикальный отрезок, его длина равна величине барьера Шоттки qb.

8. В области пространственного заряда полупроводника энергетические линии, соответствующие Ec, Ev и Ei, представляются изогнутыми относительно нейтральной области полупроводника по параболическому закону. Величина (по вертикали) изгиба энергетических уровней на поверхности полупроводника в точке x = 0 (граница раздела металл-полупроводник) равна контактной разности потенциала "металл-полупроводник" q0.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]