Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 3(19-27главы).doc
Скачиваний:
29
Добавлен:
15.11.2019
Размер:
4.8 Mб
Скачать

Природа вещества

Неорганические соединения (за исключением некоторых соединений урана, лантанидов) обычно не способны флуоресцировать в растворе. В то же время среди органических соединений флуоресцирующих веществ достаточно много.

Необходимым (но не достаточным!) условием для фотолюминесценции является способность вещества поглощать электромагнитное излучение УФ- или видимого диапазона. Обычно вещества, обладающие интенсивной флуоресценцией, имеют длинную систему сопряжённых связей. Наиболее часто флуоресцирующие вещества встречаются среди ароматических соединений. Введение в бензольное кольцо электронодонорных заместителей увеличивает способность вещества флуоресцировать. Например, многие фенолы и ароматические амины обладают интенсивной флуоресценцией. Введение электроноакцепторных заместителей, за некоторым исключением, уменьшает флуоресценцию. Атомы тяжёлых галогенов (Br, I) увеличивают скорость интеркомбинационной конверсии и, тем самым, уменьшают квантовый выход флуоресценции. Однако введение тяжёлых галогенов увеличивает способность вещества фосфоресцировать. Способность вещества к флуоресценции в растворе увеличивается при конденсации ароматических колец и увеличении «жёсткости» молекулы. Например

Концентрация вещества

Зависимость между интенсивностью флуоресценции и концентрацией флуоресцирующего вещества в растворе более сложная, чем между поглощением света и концентрацией. Это связано с тем, что процесс излучения является вторичным и зависит от предшествующего ему процесса поглощения света.

Рассмотрим простейший случай, когда в растворе находится только одно флуоресцирующее вещество.

Таким образом:

Следовательно, зависимость между интенсивностью флуоресценции и концентрацией флуоресцирующего вещества не является линейной.

Функцию можно разложить в ряд Маклорена

Если произведение (оптическая плотность раствора) невелико, то и тогда

Таким образом, при малых значениях оптической плотности (при возб) зависимость интенсивности флуоресценции от концентрации можно считать линейной, что и используется в количественном анализе. При более высоких значениях A зависимость интенсивности флуоресценции от концентрации становится более сложной и отклоняется от линейной. При A = 0,01 отклонение от линейности составляет 1%, 0,05 - 5%; 0,5 - около 35% (рис. 21.4).

Рис. 21.4. Зависимость между интенсивностью флуоресценции и оптической плотностью раствора

1) рассчитанная по упрощённой формуле I = KC; 2) реальная

Влияние оптической плотности раствора на интенсивность флуоресценции называется «эффектом внутреннего фильтра». Этот эффект обусловлен двумя причинами:

  • поглощением возбуждающего света, вследствие чего частицы, находящиеся дальше от источника излучения, будут получать меньше возбуждающего излучения;

  • поглощением одними частицами вещества излучения, испускаемого другими частицами этого же вещества.

Условия, в которых находится флуоресцирующее вещество

Растворитель может оказывать влияние на величину разности между max спектра поглощения вещества (или спектра возбуждения флуоресценции) и спектра испускания. При увеличении диэлектрической проницаемости растворителя эта разность, называемая Стоксовым сдвигом, увеличивается. Растворитель влияет также и на величину квантового выхода флуоресценции, увеличивая её или уменьшая. Например, квантовый выход флуоресценции эозина в воде равен 0,2, а в ацетоне - близок к 1.

Влияние рН сказывается на флуоресценции тех веществ, в молекулах которых имеются функциональные группы, склонные к кислотно-основному взаимодействию. Например, фенол и его производные флуоресцируют в кислой среде, при ионизации фенольного гидроксила флуоресценция исчезает. Органические вещества, цвет и интенсивность флуоресценции которых изменяется при изменении рН, могут быть использованы в качестве кислотно-основных индикаторов (флуоресцеин, хинин и т.п.).

При повышении температуры увеличивается вероятность безызлучательных переходов, поэтому интенсивность флуоресценции уменьшается. Однако, у некоторых веществ свечение прекращается уже при -100С, другие продолжают слабо флуоресцировать даже при >100С. Если поместить флуоресцирующее вещество в специальную среду и охладить до температуры кипения жидкого азота (или даже жидкого гелия), то можно добиться того, что спектр флуоресценции органического вещества станет линейчатым. Такое явление называется эффектом Шпольского. Использование данного эффекта значительно повышает избирательность анализа и снижает предел обнаружения.

Интенсивность флуоресценции вещества и её квантовый выход могут снижаться в присутствии в растворе других веществ, называемых тушителями. Существуют, так называемые, универсальные тушители (например, O2), которые уменьшают флуоресценцию большинства веществ. Однако, чаще тушитель влияет на флуоресценцию одного вещества и не влияет на флуоресценцию другого (например, хлориды уменьшают интенсивность флуоресценции хинина), поскольку эффект тушения в разных случаях имеет различный механизм. Влияние концентрации тушителя на интенсивность флуоресценции вещества описывается уравнением Штерна-Фольмера

где Iq - интенсивность флуоресценции в присутствии тушителя, Сq - концентрация тушителя, k - константа тушения.

Механизм молекулярной фотолюминесценции. Флуоресценция и фосфоресценция

При поглощении кванта света молекула вещества переходит из основного электронного состояния в возбуждённое. Одной из характеристик электронного состояния является мультиплетность

,

где S - суммарный спин данного электронного состояния.

Рис. 21.3. Фотопроцессы в молекуле (диаграмма Яблонского)

КР - колебательная релаксация; ВК - внутренняя конверсия; ИКК - интеркомбинационная конверсия; ФЛ - флуоресценция; Ф - фосфоресценция.

Основное состояние молекулы обычно является синглетным. Возбуждённые состояния могут быть как синглетными, так и триплетными, причём возбуждённое триплетное состояние имеет немного меньшую энергию, чем соответствующее ему синглетное.

Для описания физических процессов, которым подвергаются молекулы в возбуждённом состоянии, обычно используют энергетические диаграммы типа показанной на рис. 21.3.

Когда молекула поглощает свет, она за очень короткое время (10-15 с) переходит на какой-то колебательный и вращательный уровень одного из возбуждённых синглетных состояний (обычно S1 или S2). Далее с возбуждённой молекулой могут происходить 2 типа процессов: безызлучательные (показаны на диаграмме волнистой линией) и излучательные (показаны на диаграмме прямой линией). Молекула может отдавать свою энергию небольшими порциями (например, при столкновении с другими молекулами). При этом электрон возвращается с более высоких колебательных уровней на более низкие в пределах данного электронного уровня. Такой процесс называется колебательной релаксацией. Безызлучательный переход между состояниями, имеющими одинаковую энергию и одинаковую мультиплетность, называется внутренней конверсией. Безызлучательный переход между состояниями, имеющими одинаковую энергию, но разную мультиплетность называется интеркомбинационной конверсией.

Флуоресценция - излучательный переход между состояниями, имеющими одинаковую мультиплетность.

В подавляющем большинстве случаев флуоресценция сложных органических молекул обусловлена переходом с нулевого колебательного уровня возбуждённого состояния S1 на какой-то из колебательных уровней S0, реже S2 S0 (например, в молекуле азулена) и очень редко Sk Sm или Tm Tn. Флуоресценция - быстрый процесс (10-9 - 10-6 с).

Фосфоресценция - излучательный переход между состояниями, имеющими разную мультиплетность.

Обычно фосфоресценции соответствует переход T1  S0. Переходы между состояниями с различной мультиплетностью имеют очень малую вероятность, то есть являются “запрещёнными”. Излучательный переход, обуславливающий фосфоресценцию, имеет  в 106 раз меньшую вероятность, чем переход, определяющий флуоресценцию, поэтому фосфоресценция имеет гораздо большую длительность (в среднем 10-3 - 10 с), чем флуоресценция.

78

Измерение аналитического сигнала

Для измерения интенсивности флуоресценции используют спектрофлуориметры и флуориметры (на рис. 21.5).

В качестве источника излучения используют ртутную, ксеноновую и другие лампы. В последнее время для возбуждения флуоресценции применяют лазеры.

Для выделения нужного спектрального интервала в флуориметрах, как и в фотоэлектроколориметрах, используют светофильтры, а в спектрофлуориметрах, также как и в спектрофотометрах - монохроматоры (дифракционные решётки или призмы). Светофильтр (монохроматор), используемый для выделения необходимого возбуждающего излучения, называется первичным, а для выделения наиболее интенсивного излучения из спектра испускания - вторичным.

Рис. 21.5. Принципиальная схема прибора для измерения интенсивности флуоресценции

Измерение флуоресценции, в отличие от измерения поглощения, чаще всего проводят под прямым углом к направлению возбуждающего света. Такой приём позволяет избежать наложения возбуждающего света на излучаемый. При измерении интенсивности фосфоресценции, либо при большом Стоксовом сдвиге, можно использовать схему, при которой источник возбуждения, образец и детектор находятся на одной оптической оси. В данном случае возбуждающий свет не мешает определению, так как при измерении интенсивности фосфоресценции измерение проводят после прекращения действия возбуждающего света, а при большом Стоксовом сдвиге возб и исп настолько различаются, что возбуждающий свет задерживается монохроматором и не попадает на детектор. В случае сильно поглощающих растворов, полупрозрачных и твёрдых образцов используют фронтальный способ, при котором измерение флуоресценции проводится под углом 45 относительно возбуждающего излучения.

При измерении флуоресценции имеют дело со слабым излучением, поэтому в качестве детектора используют не фотоэлементы, как в спектрофотометрии, а фотоумножители.

Практическое применение и основные приёмы люминесцентного анализа

К люминесцентной спектроскопии относят:

  • флуоресцентный метод анализа (флуориметрия),

  • фосфоресцентный метод анализа (фосфори­метрия),

  • хеми- и биолюминесцентный метод анализа (люминометрия) и др.

Наиболее широкое применение среди перечисленных люминесцентных методов анализа имеет флуориметрия. По сравнению со спектрофотометрией флуориметрия обладает:

  • большей избирательностью (не все вещества, поглощающие УФ- и видимое излучение, способны флуоресцировать);

  • более низким пределом обнаружения (измерить абсолютную величину малого сигнала всегда легче, чем разность между двумя большими сигналами);

  • удобным временным диапазоном.

Поглощение света - это практически мгновенный процесс (10-15 - 10-16 с), флуоресценция длится около 10 нс (а фосфоресценция значительно дольше). За это время с молекулой могут произойти различные процессы, которые влияют на характеристики флуоресценции. Данное свойство широко используется в биохимии для изучения строения мембран, диффузии биомолекул, динамики связывания антигенов и антител. Влияние вращения молекул антигенов (лекарств, ядов), меченых флуоресцеином, на поляризацию флуоресценции последнего лежит в основе поляризационного флуороиммуно­анализа, одного из современных методов анализа биологических объектов.

Флуоресцентный анализ используют для обнаружения и для количественного определения веществ. В качественном анализе чаще всего используется способность вещества флуоресцировать тем или иным цветом. При этом в качестве источника возбуждения обычно используют УФ-лампу, а наличие или отсутствие флуоресценции определяют визуально. Таким образом, например, обнаруживают флуоресцирующие вещества на плоскостных хроматограммах.

В количественном анализе используют зависимость интенсивности флуоресценции от концентрации флуоресцирующего вещества либо, реже, зависимость уменьшения интенсивности флуоресценции от концентрации тушителя, в роли которого выступает вещество, концентрацию которого необходимо определить.

В флуоресцентном анализе используется:

  • измерение собственной флуоресценции вещества;

  • получение флуоресцирующих продуктов, в том числе и экстракционная флуориметрия;

  • определения, основанные на тушении флуоресценции;

  • титрование с флуоресцентными индикаторами и др.

Флуориметрическое определение, основанное на собственной флуоресценции, используется для определения хинина, берберина, рибофлавина, фторхинолонов, флуоресцеина и т.д.

Обратите внимание на особенности структуры флуоресцирующих веществ – наличие в составе их молекул конденсированных ароматических систем.

В основе реакций получения флуоресцирующих продуктов могут лежать различные процессы: окисления, конденсации, образование комплексных соединений, ионных ассоциатов и др. Если образующийся продукт мало растворим в воде, неустойчив в водном растворе, либо избыток реагента мешает определению или влияет на устойчивость продукта, применяют экстракционную флуориметрию. Иногда вещество не флуоресцирует или слабо флуоресцирует в водной среде, но интенсивно флуоресцирует в среде органического растворителя.

Флуориметрическое определение, основанное на тушении флуоресценции, применяют для определения сульфаниламидов (тушат флуоресценцию 9-хлоракридина), -лактамных антибиотиков (тушат флуоресценцию меркурохрома) и т.д.

К новым подходам в люминесцентной спектроскопии относятся:

  • производная спектрофлуориметрия;

  • синхронная спектрофлуориметрия;

  • спектроскопия, основанная на эффекте Шпольского;

  • флуоресцентная спектроскопия узких линий,

  • фосфориметрия при комнатной температуре и др.