Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
29 - 32.docx
Скачиваний:
13
Добавлен:
26.09.2019
Размер:
336.56 Кб
Скачать

29. Модулированные сигналы и их применение. Амплитудная, фазовая и частотная модуляции.

Модулированные сигналы и их применение.

Общие сведения о модуляции. Для передачи сигналов на большие расстояния необходимо, чтобы они обладали большой энергией. Известно, что энергия сигнала пропорциональна четвертой степени его частоты, то есть сигналы с большей частотой обладают большей энергией. В практике часто сигналы, несущие в себе информацию, например, речевые сигналы, имеют низкую частоту колебаний и поэтому, чтобы передать их на большое расстояние необходимо частоту информационных сигналов повышать. Добиваются этого путем “накладывания” информационного сигнала на другой сигнал, который имеет высокую частоту колебаний.

Рассмотрим гармоническое колебание, которое имеет частоту ω достаточную для распространения на большие расстояния и изменяется по закону:

Наложить информацию на это колебание можно путем медленного, по сравнению с периодом, изменения его амплитуды Um, частоты ω или фазы φ. Такой процесс называется модуляцией.

В зависимости от того, какой параметр изменяют, различают амплитудную, частотную и фазовую модуляцию.

Амплитудно-модулированные сигналы. При амплитудной модуляции получается сигнал, у которого амплитуда изменяется (модулируется) по закону сигнала, в котором содержится информация. Фаза и частота несущего сигнала при амплитудной модуляции остаются неизменными, если не учитывать возникающую нежелательную паразитную частотную или фазовую модуляцию.

Амплитудно-модулированный сигнал получается путем перемножения двух сигналов. Один содержит информацию, а другой является несущим. Пусть сигнал информации, (рис.2.14) и несущее колебание (рис. 2.15) изменяются в соответствии со следующими выражениями:

 

U1(t) = U0 + U1m cosΩt,

U2(t) = U2m cos t,

где U0 – постоянная составляющая сигнала, U1mи U2m – амплитуды информационного сигнала и несущего колебания, Ω, ω - частота информационного сигнала и несущего колебания.

Рис. 2.14. Информационный сигнал.

Рис. 2.15. Несущее колебание.

Перемножим эти сигналы:

Введем обозначения:

        

где Um - амплитуда промодулированного сигнала, М – коэффициент модуляции.

С учетом введенных обозначений, получим выражение для амплитудно – модулированного сигнала в следующем виде:

  (2.54)

Вид амплитудно-модулированного сигнала показан на рис. 2.16, а его спектр на рис. 2.17.

Рис. 2.16. Амплитудно-модулированный сигнал.

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой гармоник. Видно, что амплитуды боковых составляющих зависят от коэффициента модуляцииМ.

 

Рис.2.17. Спектр амплитудно – модулированного сигнала.

На практике бывает случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав:

.                                          (2.55)

Здесь частоты Ωi образуют упорядоченную возрастающую последовательность Ω1 < Ω2 <…< ΩN, в то время, как амплитуды Ui и начальные фазы ϕi произвольны. Вид сигнала показан на рис. 2.18. В этом случае амплитудно – модулированный сигнал будет иметь вид:

          (2.56)

Введем обозначение:

.

Тогда выражение (2.56) примет вид:

Выполним преобразования будем иметь:

          (2.57)

Рис. 2.18. Спектр низкочастотного модулирующего сигнала.

Спектральная диаграмма многотонального АМ – сигнала приведена на рис. 2.19.

Рис. 2.19. Спектр многотонального АМ – сигнала.

Видно, что в спектре сложномодулированного АМ – сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величинуω0. Спектр нижних боковых колебаний располагается зеркально относительно несущей частоты ω0 и также повторяет спектральную диаграмму модулирующего сигнала. Ширина спектра АМ – сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Частотно- и фазомодулированные сигналы. Частотно-модулированный сигнал - это колебание, у которого мгновенная частота изменяется по закону модулирующего сигнала. Пусть модулирующий сигнал и несущее колебание изменяется, как показано на рис. 2.20, 2.21.

Рис.2.20. Модулирующий сигнал.

Рис.2.21. Несущий сигнал.

Тогда мгновенная частота при частотной модуляции равна:

                                          (2.58)

здесь Δω - девиация (отклонение) частоты под действием модулирующего  сигнала, это отклонение в принципе пропорционально амплитуде модулирующего колебания. Мгновенную фазу частотно-модулированного сигнала найдем, проинтегрировавω (t) по времени:

                          (2.59)

В соответствии с рис. 2.21 и выражением (2.59) частотно-модулированное колебание запишется в следующем виде:

                                  (2.60)

где   - есть индекс частотной модуляции. Вид частотно – модулированного сигнала показан на рис. 2.22.

Рис. 2.22. Частотно – модулированный сигнал.

Преобразуем выражение (2.60) по формуле косинуса суммы двух аргументов, получим:

         (2.61)

Применим для выражений cos(m sin Ωt) и sin(m sin Ωt) преобразования по функциям Бесселя :

Тогда выражение (2.61) для частотно-модулированного сигнала будет иметь вид:

.          (2.62)

Из (2.62) видно, что частотно – модулированный сигнал имеет дискретный спектр рис. 2.23. с гармониками на частотах (ω0± nΩ), где n=1, 2, 3, 4, 5…

Рис. 2.23. Спектр частотно – модулированного сигнала.

Вид спектра модулированного колебания зависит от индекса частотной модуляции m, теоретически спектр бесконечен, но на практике он ограничивается двумя - тремя составляющими, так как функции Бесселя высших порядков интенсивно убывают.

Фазомодулированным колебанием называется колебание, у которого фаза изменяется по закону модулирующего сигнала. Выражение, описывающее такое колебание, имеет вид:

.

Частотно-модулированное колебание является в то же время и фазомодулированным. Иногда оба вида модуляции называют угловой модуляцией. Однако при частотной модуляции изменение частоты, а не фазы совпадает с законом изменения модулирующего сигнала. Кроме того, при частотной модуляции индекс модуляции обратно пропорционален модулирующей частоте, тогда как при фазовой модуляции такой зависимости нет.

Когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего напряжения.

Амплитудная, фазовая и частотная модуляции.

Поскольку сети связывают цифровые компьютеры, по каналу связи необходимо передавать дискретные данные. Соответственно, при использовании аналоговых сигналов необходимо некоторое превращение (кодировка) переданных данных этими сигналами. Такое превращение называется аналоговой модуляцией(или аналоговой кодировкой). В его основе лежит изменение одной из характеристик синусоидального несущего сигнала в соответствии с последовательностью переданных данных. Основные способы аналоговой модуляции: амплитудная, частотная и фазовая. Возможно также использование комбинированных методов, например, соединения амплитудной и фазовой модуляций.

При амплитудной модуляции (рис. 1 b) изменяется только амплитуда синусоиды несущей частоты, при передаче логической единицы выдается синусоида одной амплитуды, а при передаче логического нуля – другой амплитуды. Этот способ в чистом виде имеет низкую ошибкоустойчивость и применяется редко.

При частотной модуляции (рис. 1 c) изменяется только частота несущей – для логической единицы и логического нуля выбираются синусоиды двух разных частот. Этот способ достаточно просто реализовать, и часто применяется при низкоскоростной  передаче данных.

При фазовой модуляции (рис. 1 d) логической единице и логическому нулю отвечают сигналы одинаковой амплитуды и частоты, но отличаются по фазе (например, 0 и 180 градусов).

Из комбинированных методов широко используются методы квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM), которые соединят амплитудную модуляцию с 4 уровнями амплитуды и фазовую модуляцию с 8 значениями сдвига фазы. Из 32 возможных комбинаций амплитуды и сдвига фазы для передачи данных в разных модификациях метода используются всего некоторые, в то время, как все другие комбинации являются запрещенными, что позволяет улучшить распознавание ошибочных сигналов.

Рис. 1 - Разные типы модуляции

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]