Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shporki.docx
Скачиваний:
33
Добавлен:
26.09.2019
Размер:
1.8 Mб
Скачать

4.Момент импульса. Момент силы. Основное уравнение динамики вращательного движения. Закон сохранения момента импульса.

Для простоты рассмотрим случай плоского движения, т.е. траектория движения материальной точки лежит в одной плоскости, которую мы расположим перпендикулярно плоскости листа. Выберем на плоскости начало координат О и положение материальной точки будем описывать радиус-вектором . Скорость точки , ее импульс , ускорение , и сила будут расположены в плоски движения материальной точки, как показано на рисунке.

ведем две новые физические величины: момент силы и момент импульса относительно начала координат O. - момент силы относительно начала координат.Модуль вектора равен , где - угол между векторами и . Если опустить перпендикуляр из точки O на направление действия силы, то его длина будет плечом силы , и модуль момента сил будет равен произведению силы на плечо, т.е. , что совпадает со школьным определением момента силы.Аналогично моменту силы вводится момент импульса момент импульса материальной точки относительно начала координат. ,где - угол между векторами и , —плечо импульса , т.е. длина перпендикуляра, опущенного из точки O на направление вектора материальной точки. Оба вектора и , согласно определения направлены перпендик-о плоскости движения материальной точки.В общем случае неплоского движения, направление векторов и не совпадают, но существует закон, который связывает момент импульса с моментом силы . Чтобы установить этот закон, возьмем производную от вектора :

.

В результате получаем: -закон изменения момента импульса материальной точки относительно начала координат.

Закон сохранения момента импульса системы материальных точек

Рассмотрим систему, состоящую из n материальных точек: Выберем начало координат О, тогда положение точек будет задаваться радиус-векторами

.

Пусть материальные точки обладают импульсами

,

и пусть между материальными точками системы действуют силы внутреннего взаимодействия , а также на материальные точки действуют внешние силы . Определим моменты этих сил относительно начала координат:

- момент внутренней силы ,

- момент внешней силы .

Определим также моменты импульсов материальных точек

.

Далее для каждой материальной точки запишем закон изменения момента импульса

Просуммировав левые и правые части этих уравнений, получим

Силы взаимодействия между материальными точками действуют в противоположные стороны вдоль одной и той же прямой. Их моменты относительно начала координат О равны по величине и противоположны по направлению. Поэтому моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил равна нулю. В результате получим

.Если система материальных точек является замкнутой, то , и тогда имеет место закон сохранения момента импуль - закон сохранения момента импульса системы материальных точек.Если система материальных точек является замкнутой, то суммарный момент импульса системы остаётся постоянным, т.е. сохраняется во времени.

5. Силы в природе. Четыре вида взаимодействия. Силы сухого и вязкого трения

Несмотря на разнообразие сил, имеется всего четыре типа взаимодействий: гравитационное, электромагнитное, сильное и слабое. Гравитационные силы заметно проявляются в космических масштабах. Одним из проявлений гравитационных сил является свободное падение тел. Земля сообщает всем телам одно и то же ускорение, которое называют ускорением свободного падения g. Оно незначительно меняется в зависимости от географической широты. На широте Москвы оно равно 9,8 м/с2. Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сильные и слабые взаимодействия проявляются внутри атомных ядер и в ядерных превращениях. Гравитационное взаимодействие существует между всеми телами, обладающими массами. Закон всемирного тяготения, открытый Ньютоном, гласит:Сила взаимного притяжения двух тел, которые могут быть принятыми за материальные точки, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности у называют гравитационной постоянной. Она равна 6,67 • 10-11 Н•м2/кг2. Если на тело действует лишь гравитационная сила со стороны Земли, то она равна mg. Это и есть сила тяжести G (без учета вращения Земли). Сила тяжести действует на все тела, находящиеся на Земле, вне зависимости от их движения. При движении тела с ускорением свободного падения (или даже с меньшим ускорением, направленным вниз) наблюдается явление полной или частичной невесомости. Полная невесомость - отсутствие давления на подставку или на подвес. Вес - сила давления тела на горизонтальную опору или сила растяжения нити со стороны подвешенного к ней тела, которая возникает в связи с гравитационным притяжением данного тела к Земле. Силы притяжения между телами неуничтожимы, тогда как вес тела может исчезнуть. Так, в спутнике, который двигается с первой космической скоростью вокруг Земли, вес отсутствует так же, как в лифте, падающем с ускорением g. Примером электромагнитных сил являются силы трения и упругости. Различают силы трения скольжения и силы трения качения. Сила трения скольжения намного больше силы трения качения. Сила трения зависит в некотором интервале от приложенной силы, которая стремится сдвинуть одно тело относительно другого. Прикладывая различную по величине силу, увидим, что небольшие силы не могут сдвинуть тело. При этом возникает компенсирующая сила трения покоя. При отсутствии сил, сдвигающих тело, сила трения покоя равна нулю. Наибольшее значение сила трения покоя приобретает в момент, когда одно тело начинает двигаться относительно другого. В этом случае сила трения покоя становится равной силе трения скольжения:

где n - коэффициент трения, N - сила нормального (перпендикулярного) давления. Коэффициент трения зависит от вещества трущихся поверхностей и их шероховатости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]