Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shporki.docx
Скачиваний:
33
Добавлен:
26.09.2019
Размер:
1.8 Mб
Скачать

8. Сложение гармонических колебаний одинаковой частоты и взаимно перпендикулярного направления . Фигуры Лиссажу.

Рассмотрим результат сложения двух гар­монических колебаний одинаковой часто­ты , происходящих во взаимно перпенди­кулярных направлениях вдоль осей х и у. Для простоты начало отсчета вы­берем так, чтобы начальная фаза первого колебания была равна нулю:

Разность фаз обоих колебаний равна , А и В — амплитуды складываемых коле­баний.

Уравнение траектории результирую­щего колебания находится исключением из выражений (145.1) параметра t. За­писывая складываемые колебания в виде

и заменяя во втором уравнении cost на х/А и sintна (1-(х/A)2), получим по­сле несложных преобразований уравнение эллипса, оси которого ориентированы относительно координатных осей произ­вольно:

Так как траектория результирующего ко­лебания имеет форму эллипса, то такие колебания называются эллиптически по­ляризованными.

Ориентация осей эллипса и его разме­ры зависят от амплитуд складываемых колебаний и разности фаз . Рассмотрим некоторые частные случаи, представляю­щие физический интерес:

1) =m(m=0, ±1, ±2,...). В дан­ном случае эллипс вырождается в отрезок прямой

у=±(В/А)х, (145.3) где знак плюс соответствует нулю и четным значениям т (рис. 205, a), a знак минус — нечетным значениям т (рис. 205, б). Результирующее колеба­ние является гармоническим колебанием

с частотой  и амплитудой (A22), совершающимся вдоль прямой (145.3), составляющей с осью х угол =

Вданномслучаеимеем дело с линейно поляризованными колебаниями.

В данном случае уравнение примет вид

Это уравнение эллипса, оси которого со­впадают с осями координат, а его полуоси равны соответствующим амплитудам (рис.206). Кроме того, если А=В, то эллипс (145.4) вырождается в окруж­ность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями, поляризованными по кругу.Если частоты складываемых взаимно перпендикулярных колебаний различны, то замкнутая траектория результирующе­го колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, со­вершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу. Форма этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рис. 207 представлены фигуры Лисса­жу для различных соотношений частот (указаны слева) и разностей фаз (указа­ны вверху).Отношение частот складываемых коле­баний равно отношению числа пересече­ний фигур Лиссажу с прямыми, парал­лельными осям координат. По виду фигур можно определить неизвестную частоту по известной или определить отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу — широко исполь­зуемый метод исследования соотношений частот и разности фаз складываемых ко­лебаний, а также формы колебаний.

ВОЛНЫ

1.Волновые процессы. Продольные и поперечные волны

Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной.

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны.

Продольная волна – это волна, в которой частицы среды колеблются вдоль направления распространения волны.

Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.

Упругие поперечные волны могут возникать лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

На рисунке показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстоянии 1/4 vT, т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигнет крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода частица 1 будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица 2 достигнет крайнего верхнего положения, а частица 3 начнет смещаться вверх из положения равновесия. В момент времени, равный T, частица 1 закончит полный цикл колебания, и будет находиться в таком же состоянии движения, как и в начальный момент времени. Волна к моменту времени T, пройдет путь vT и достигнет частицы 5.

На рисунке показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц в некотором объеме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства.

Геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом).

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической.

Расстояние , на которое распространяется волна за время, равное периоду колебания частиц среды, называется длиной волны. Очевидно, что:

,

где v- скорость волны, T- период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющихся с разностью фаз, равной 2. Заменив T через , где - частота колебаний, получим связь между длиной волны, частотой колебаний и скоростью распространения волны:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]