Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.ОТВЕТЫ.docx
Скачиваний:
37
Добавлен:
23.09.2019
Размер:
674.26 Кб
Скачать

Вопрос 20. Прохождение частиц через потенциальный барьер ( туннельный эффект).

Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 5.4) для одномерного (по оси х) движения частицы.

Рис. 5.4

 Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать:

 При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером при E > U, либо отразится от него (E < U) и будет двигаться в обратную сторону, т.е. она не может проникнуть через барьер.

       Для микрочастиц же, даже при E < U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E > U имеется также отличная от нуля вероятность, что частица окажется в области x > l, т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи.

       Уравнение Шредингера для состояний каждой из выделенных областей имеет вид:

5.4.1

5.4.2

Общее решение этих дифференциальных уравнений:

 Качественный анализ функций Ψ1(x), Ψ2(x), Ψ3(x) показан на рис. 5.4. Из рисунка следует, что волновая функция не равна нулю и внутри барьераа в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсомт.е. с той же частотойно с меньшей амплитудой.

       Таким образом, квантовая механика приводит к принципиально новому квантовому явлению  туннельному эффекту, в результате которого микрообъект может пройти через барьер.

Коэффициент прозрачности для барьера прямоугольной формы

 Прохождение частицы сквозь барьер можно пояснить соотношением неопределенностей. Неопределенность импульса на отрезке Δx = l составляет Связанная с этим разбросом кинетическая энергия может оказаться достаточной для того, чтобы полная энергия оказалась больше потенциальной и частица может пройти через барьер.

       С классической точки зрения прохождение частицы сквозь потенциальный барьер при E < U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом.

Строгое квантово-механическое решение задачи о гармоническом осцилляторе приводит еще к одному существенному отличию от классического рассмотрения. Оказывается, что можно обнаружить частицу за пределами дозволенной области ( xmin, xmax ) (рис. 5.5)

Рис 5.5

  Это означает, что частица может прибывать там, где ее полная энергия меньше потенциальной энергии. Это оказывается возможным вследствие туннельного эффекта.

Вопрос 21. Квантовый гармонический осциллятор.

ГАРМОНИЧЕСКИЙ ОСЦИЛЯТОР (ГО). ГО называют материальную точку, совершающую одномерные движения около положения равновесия под действием квази-упругой силы. F= - kx;  k – силовая констата или коэфициент упругости. U=kx(c.2)/2, ω0=√k/m` U=m ω0 (c.2) x (c.2) / 2. Амплитудное уравнение Шредингера, определяющее стационарное состояние гармонического осцилятора.  ∂(c.2)ψ/∂x(c.2) + 2m/h(в)(с.2) * (E – m ω0(c.2)x(c.2)/2)ψ=0, E – полная энергия ГО. Это уравнение имеет однозначные непрерывные и конечные решения при значениях E=(V+ ½)h(в)(с.2)ω0; V=0,1,2,3… - колебательное квантовое число. => энергия ГО квантована и может быть представлена в виде уровней энергии (см. рисунок). Самое малое  значение энергии ГО получается при значении V=0,  E=(1/2)* h(в)(с.2)ω0 – нулевая энергия ГО, наличие  которой при дальнейших исследованиях было установлено  экспериментально. При исследовании рассеяния света на  кристаллах при низких температурах оказалось, что интенсивность рассеиваемого света при понижении температуры стремится не к нулю, а к некотрому констатному значению, которое и получило название нулевой энергии, и показало, что колебания узлов кристаллической решетки не прекрашаются и в области температур, близких к абсолютному нулю, квантовая механика дает возможность рассчитывать вероятность перехода с одного энергетического уровня на другой. Применительно к ГО решение уравнения Шредденгера приводит к выводу, что возможны лишь такие переходы между энергетическими состояниями, при которых квантовое число меняется на 1, ∆V=+ - 1. Это означает, что ГО излучает лишь одну частоту, т.е. энергия ГО меняется порциями, кратными h(в)ω, что совпадает с представлениями Планка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]