Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.ОТВЕТЫ.docx
Скачиваний:
37
Добавлен:
23.09.2019
Размер:
674.26 Кб
Скачать

13)Физические предпосылки возникновения квантовой механики(проблемы не разрешимые классической физикой).Постулаты бора.

Физические предпосылки создания квантовой механики Атомные спектры излучения

 Согласно экспериментальным данным, полученным к концу XIX века, частоты спектральных линий данного атома

 ,

где  - функция целого числа (спектральный терм),   . Это соотношение выражает комбинационный принцип Ритца (W. Ritz). В частности, для

спектра излучения атома водорода Бальмер (J. Balmer) в 1885 г. эмпирически нашел простую формулу

,

где  - постоянная Ридберга (J. Rydberg).

 В классической теории для периодического движения заряженных частиц частоты излучения кратны основной частоте:

 ,

- период. Таким образом, эта теория не может объяснить комбинационный принцип.

Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Для получения энергетических уровней в атоме водорода, в рамках модели Бора, записывается второй закон Ньютона для движения электрона по круговой орбите в поле кулоновской силы притяжения:

где m — масса электрона, e — его заряд, Z — заряд ядра и k- кулоновская константа, зависящая от выбора системы единиц. Это соотношение позволяет выразить скорость электрона через радиус его орбиты:

Энергия электрона равна сумме кинетической энергии движения и его потенциальной энергии:

Используя правило квантования Бора, можно записать:

откуда радиус орбиты выражается через квантовое число n. Подстановка радиуса в выражение для энергии даёт:

Комбинация констант

 эВ

называется постоянной Ридберга.

14)Волны де-бройля.Соотношение неопределенностей гейзенберга. Во́лны де Бро́йля — волны, связанные с любыми микрочастицами и отражающие их волновую природу. Физический смысл

Для частиц не очень высокой энергии, движущихся со скоростью   (скорости света), импульс равен   (где   — масса частицы), и  . Следовательно, длина волны де Бройля тем меньше, чем больше масса частицы и её скорость. Например, частице с массой в 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с   м, что лежит за пределами доступной наблюдению области. Поэтому волновые свойства несущественны в механике макроскопических тел. Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~ 1 нм до 10−2 нм, то есть в интервале длин волн рентгеновского излучения. Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей.[1]

Первое подтверждение гипотезы де Бройля было получено в 1927 году в опытах американских физиков К. Дэвиссона и Л. Джермера. Пучок электронов ускорялся в электрическом поле с разностью потенциалов 100—150 В (энергия таких электронов 100—150 эВ, что соответствует   нм) и падал на кристалл никеля, играющий роль пространственнойдифракционной решётки. Было установлено, что электроны дифрагируют на кристалле, причём именно так, как должно быть для волн, длина которых определяется соотношением де Бройля.[1]

Подтвержденная на опыте идея де Бройля о двойственной природе микрочастиц — корпускулярно-волновом дуализме — принципиально изменила представления об облике микромира. Поскольку всем микрообъектам (за ними сохраняется термин «частица») присущи и корпускулярные, и волновые свойства, то, очевидно, любую из этих «частиц» нельзя считать ни частицей, ни волной в классическом понимании. Возникла потребность в такой теории, в которой волновые и корпускулярные свойства материи выступали бы не как исключающие, а как взаимно дополняющие друг друга. В основу такой теории — волновой, или квантовой, механики — и легла концепция де Бройля. Это отражается даже в названии «волновая функция» для величины, описывающей в этой теории состояние системы. Квадрат модуля волновой функции определяет вероятность состояния системы, и поэтому о волнах де Бройля часто говорят[3] как о волнах вероятности (точнее, амплитуд вероятности). Для свободной частицы с точно заданным импульсом   (и энергией  ), движущейся вдоль оси  , волновая функция имеет вид[1]:

где   — время,  .

В этом случае  , то есть вероятность обнаружить частицу в любой точке одинакова.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физическихнаблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения   координаты и среднеквадратического отклонения  импульса, мы найдем что:

,

где   — приведённая постоянная Планка.

  • В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что, в случае нормального распределения переменных, приводит для произведения неопределённостей к большей нижней границе  .

Отметим, что это неравенство даёт несколько возможностей — состояние может быть таким, что   может быть измерен с высокой точностью, но тогда   будет известен только приблизительно, или наоборот   может быть определён точно, в то время как   — нет. Во всех же других состояниях, и   и   могут быть измерены с «разумной» (но не произвольно высокой) точностью.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]