Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия шпоры.doc
Скачиваний:
7
Добавлен:
19.09.2019
Размер:
781.31 Кб
Скачать

Фізична та колоїдна хімія 1)Диспе́рсная систе́ма — это образования из двух или более фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.). По кинетическим свойствам дисперсной фазы дисперсные системы можно разделить на два класса: Свободнодисперсные системы, у которых дисперсная фаза подвижна;Связнодисперсные системы, дисперсионная среда которых твердая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.В свою очередь эти системы классифицируются по степени дисперсности.

Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами — полидисперсными. Как правило, окружающие нас реальные системы полидисперсны. Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

2) Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении. Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

Константа диссоциации определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:

Значение зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:

,где — средний коэффициент активности электролита.

Степень диссоциации — величина, характеризующая состояние равновесия в реакции диссоциации в гомогенных (однородных) системах.Степень диссоциации равна отношению числа диссоциированных молекул к сумме , где — число недиссоциированных молекул. Часто выражают в процентах. Степень диссоциации зависит как от природы растворённого электролита, так и от концентрации раствора. Пример:Для уксусной кислоты CH3COOH величина равна 4% (в 0,01М растворе). Это значит, что в водном растворе кислоты лишь 4 из каждых 100 молекул диссоциированы, то есть находятся в виде ионов Н+ и СН3СОО, остальные же 96 молекул не диссоциированы.

3) Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение домножается на −1. Правило Вант-Гоффа — эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило:

При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза

Уравнение, которое описывает это правило следующее:

где  — скорость реакции при температуре ,  — скорость реакции при температуре ,  — температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов). Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле:

4) О́смос (от греч. ὄσμος — толчок, давление) — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя). Осмос участвует в переносе питательных веществ в стволах высоких деревьев, где капиллярный перенос не способен выполнить эту функцию. Осмос широко используют в лабораторной технике: при определении молярных характеристик полимеров, концентрировании растворов, исследовании разнообразных биологических структур. Осмотические явления иногда используются в промышленности, например при получении некоторых полимерных материалов, очистке высоко-минерализованной воды методом обратного осмоса жидкостей. Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ. Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ. Осмос также играет большую роль в экологии водоёмов. Если концентрация соли и других веществ в воде поднимется или упадёт, то обитатели этих вод погибнут из-за пагубного воздействия осмоса.

5) в) Диссоциация сульфата калия в водном растворе: К24 + + SO42- Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно, на катоде будет протекать восстановление, а на аноде — окисление воды. Схема электролиза:

6) а) В растворе сульфат меди диссоциирует на ионы: СuSО4  Сu2+ + SO42- Ионы меди могут восстанавливаться, на катоде в водном растворе. Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды. Схема электролиза:

7) Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).Различают обратимый и необратимый гидролиз солей[1]:1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):

(раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)3. Гидролиз соли слабой кислоты и слабого основания:

(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

8) Криоскопия (от греч. κρύο — холод и греч. σκοπέω смотрю) — метод исследования растворов, в основе которого лежит измерение понижения температуры замерзания раствора по сравнению с температурой замерзания чистого растворителя. Был предложен Ф. Раулем в 1882 году. при замерзании раствора давление пара над твердой фазой должно быть равно давлению пара над жидкостью. Если при замерзании раствора выделяется чистый растворитель, то давление пара над жидким раствором должно быть равно давлению пара над твердым чистым растворителем. Как было показано выше, давление пара над раствором ниже давления пара над чистым жидким растворителем, а следовательно, и соответствующее температуре замерзания равновесие для раствора будет устанавливаться при меньших температурах, чем для чистого растворителя. Это явление имеет важное значение в природе и технике. изменение температуры замерзания для разбавленных растворов может быть рассчитано по формуле:

где  — энтальпия замерзания (кристаллизации);

 — молярная масса растворителя;

 — моляльная концентрация растворенного вещества.

Эбулиоскопия (от лат. ebulio — вскипаю) — метод исследования растворов, основанный на измерении повышения их температуры кипения по сравнению с чистым растворителем. Используется для определения молекулярной массы растворенного вещества, активности растворителя, степени диссоциации (или изотонического коэффициента). Температура кипения жидкости — такая температура, при которой давление пара над жидкостью равно внешнему давлению. В то же время давление пара над раствором нелетучего вещества практически полностью определяется давлением пара растворителя и, в соответствии с законом Рауля, может быть выражено уравнением:

Видно, что при повышении концентрации растворенного вещества давление пара над раствором будет снижаться, а следовательно, при неизменном внешнем давлении, будет расти температура кипения. С учетом уравнения Клапейрона — Клаузиуса можно показать[1], что изменение температуры кипения раствора ( ) может быть рассчитано по формуле:

где  — энтальпия испарения;

 — молярная масса растворителя;

 — моляльная концентрация растворенного вещества.

9) Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными. Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).

  • струя воды «слипается» в цилиндр.

  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.

  • некоторые насекомые (например, Водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.

  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

10) Адгезия (от лат. adhaesio — прилипание) в физике — сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярным взаимодействием (вандерваальсовым, полярным, иногда — образованием химических связей или взаимной диффузией) в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия, т. е. сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, т. е. разрыв в объёме менее прочного из соприкасающихся материалов. Наиболее известные адгезионные эффекты — капиллярность, смачиваемость/несмачиваемость, поверхностное натяжение, мениск жидкости в узком капилляре, трение покоя двух абсолютно гладких поверхностей. Критерием адгезии в некоторых случаях может быть время отрыва слоя материала определенного размера от другого материала в ламинарном потоке жидкости.

Когезия (от лат. cohaesus — связанный, сцепленный), сцепление молекул (ионов) физического тела под действием сил притяжения. Это силы межмолекулярного взаимодействия, водородной связи и (или) иной химической связи. Они определяют совокупность физических и физико-химических свойств вещества: агрегатное состояние, летучесть, растворимость, механические свойства и т. д. Интенсивность межмолекулярного и межатомного взаимодействия (а, следовательно, силы когезии) резко убывает с расстоянием. Наиболее сильна когезия в твердых телах и жидкостях, то есть в конденсированных фазах, где расстояние между молекулами (ионами) малы — порядка нескольких размеров молекул. В газах средние расстояния между молекулами велики по сравнению с их размерами, и поэтому когезия в них незначительна. Мерой интенсивности межмолекулярного взаимодействия служит плотность энергии когезии. Она эквивалентна работе удаления взаимно притягивающихся молекул на бесконечно большое расстояние друг от друга, что практически соответствует испарению или сублимации вещества.

11) В водном растворе карбонат натрия гидролизуется, что обеспечивает щелочную реакцию среды. Уравнение гидролиза (в ионной форме):

CO32− + H2O ↔ HCO3 + OH

Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

12) Адсорбция (лат. ad — на, при; sorbeo — поглощаю) — это, в широком смысле, процесс изменения концентрации у поверхности раздела двух фаз, а в более узком и употребительном — это повышение концентрации одного вещества (газ, жидкость) у поверхности другого вещества (жидкость, твердое тело). На поверхности раздела двух фаз помимо адсорбции, обусловленной в основном физическими взаимодействиями (главным образом это Ван-дер-Ваальсовы силы), может идти химическая реакция. Этот процесс называется хемосорбцией. Чёткое разделение на адсорбцию и хемосорбцию не всегда возможно. Одним из основных параметров по которым различаются эти явления является тепловой эффект: так, тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата, тепловой эффект хемосорбции значительно выше. Кроме того в отличие от адсорбции хемосорбция обычно является необратимой и локализованной. Примером промежуточных вариантов, сочетающих черты и адсорбции и хемосорбции является взаимодействие кислорода на металлах и водорода на никеле: при низких температурах они адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать хемосорбция.

13) Адсорбция — всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма — активированный уголь), силикагели, цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

14) По размерам частиц свободнодисперсные системы подразделяют на:

Название

Размер частиц, м

Ультрамикрогетерогенные

10−9…10−7

Микрогетерогенные

10−7…10−5

Грубодисперсные

более 10−5

Ультрамикрогетерогенные системы также называют коллоидными или золями. В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии, эмульсии, пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое — газ», например, песок. Связнодисперсные системы (пористые тела) по классификации М. М. Дубинина подразделяют на:

Название

Размер частиц, нм

Микропористые

менее 2

Мезопористые

2-200

Макропористые

более 200

По рекомендации ИЮПАК[1] микропористыми называют пористые материалы с размерами пор до 2 нм, мезопористыми — от 2 до 50 нм, макропористыми — свыше 50 нм.

15) Зако́н де́йствующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ. Закон действующих масс в кинетической форме (основное уравнение кинетики) гласит, что скорость элементарной химической реакции пропорциональна произведению концентраций реагентов в степенях, равных стехиометрическим коэффициентам в уравнении реакции[1]. Это положение сформулировано в 1867 году норвежскими учёными К. Гульдбергом и П. Вааге. Для элементарной химической реакции:

закон действующих масс может быть записан в виде кинетического уравнения вида:

где  — скорость химической реакции,  — константа скорости реакции. В 1865 году Н. Н. Бекетовым и в 1867 году Гульдбергом и Вааге был сформулирован закон действующих масс:Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в некоторые степени. Гомоге́нная систе́ма (от греч. ὁμός — равный, одинаковый; γένω — рождать) — однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела). В гомогенной системе из двух и более химических компонентов каждый компонент распределен в массе другого в виде молекул, атомов, ионов. Составные части гомогенной системы нельзя отделить друг от друга механическим путем. Гетероге́нная систе́ма (от греч. ἕτερος — разный; γένω — рождать) — неоднородная система, состоящая из однородных частей (фаз), разделенных поверхностью раздела. Однородные части (фазы) могут отличаться друг от друга по составу и свойствам. Число веществ (компонентов), термодинамических фаз и степеней свободы связаны правилом фаз. Примерами гетерогенных систем могут служить: жидкость — насыщенный пар; насыщенный раствор с осадком; многие сплавы. Твердый катализатор в токе газа или жидкости тоже гетерогенная система (гетерогенный катализ).

16) Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении. Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы. Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа: Константа диссоциации определяется активностями катионов , анионов и недиссоциированных молекул следующим образом: Значение зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Классическая теория электролитической диссоциации применима лишь к разбавленным растворам слабых электролитов. Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла.

17) Эффект Тиндаля, рассеяние Тиндаля (англ. Tyndall effect) — оптический эффект, рассеяние света при прохождении светового пучка через оптически неоднородную среду. Обычно наблюдается в виде светящегося конуса (конус Тиндаля), видимого на тёмном фоне. Характерен для растворов коллоидных систем (например, золей, металлов, разбавленных латексов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления. На эффекте Тиндаля основан ряд оптических методов определения размеров, формы и концентрации коллоидных частиц и макромолекул.

18) Сульфат железа(III) в водных растворах подвергается сильному гидролизу по катиону, при этом раствор окрашивается в красновато-коричневый цвет:

19) При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются следующие: на аноде — окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;  на катоде — восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.      1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl K"катод"(-): 2H2O + 2e = H2 + 2OH

A"анод"(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl + 2H2O(электролиз) → H2 + Cl2 +2NaOH

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений[источник не указан 1095 дней], диоксида марганца[2], пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование).Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

                                                                            

20) Студни — структурированные гомогенные системы, заполненные жидкостью, каркас которых образован молекулами высокомолекулярных соединений. Возможны два пути образования студней: застудневание легкоподвижных или вязкотекучих жидкостей и набухание твёрдых полимеров в подходящих жидких средах.Студнеобразование широко используется в технологии пластмасс, резин, химических волокон, пищевых продуктов; оно распространено и в органической природе. На процесс застудневания оказывает влияние концентрация, температура, время процесса и присутствие электролитов. Время образования студня называется периодом созревания. Чем больше концентрация растворов, тем быстрее протекает процесс застудневания, так как при этом уменьшается расстояние между частицами. Для каждого полимера при данной температуре существует предельная концентрация, ниже которой он не застудневает.

21) Ге́ли (ед.ч. гель, от лат. gelo — «застываю») — структурированные дисперсные системы, состоящие из высокомолекулярных и низкомолекулярных веществ. Наличие трёхмерного полимерного каркаса (сетки) сообщает гелям механические свойства твёрдых тел (отсутствие текучести, способность сохранять форму, прочность и способность к деформации (пластичность и упругость). Вещества, способные образовывать макромолекулярную структуру гелей, называются гелеобразователями. К ним относятся как неорганические (диоксид кремния, оксид алюминия, так и органические вещества и их смеси (поливиниловый спирт, полиакриламид, желатина, агар-агар, пектиновые вещества и др.). В качестве низкомолекулярной дисперсионной среды — наполнителя геля — выступают вода, низшие моно- и олигоспирты, углеводороды. Гели с водной дисперсионной средой называются гидрогелями, со спиртовой — алкогелями, с углеводородной — органогелями (общее название «лиогели»).Гели образуются при коагуляции и последующей коалесценции золей, понижении температуры, концентрировании мицеллярных растворов мыл или выделении новой дисперсной фазы из пересыщенных растворов.Удалением из лиогелей жидкой среды можно получить тонкопористые тела (аэрогели или ксерогели), в которых дисперсная фаза превращается в прочные адгезионные или фазовые (когезионные) пористые структуры. Таковы алюмогель и силикагель, получаемые высушиванием гидрогелей гидроксида алюминия и кремниевых кислот.Гели термодинамически неустойчивы: вследствие синерезиса дисперсная система самопроизвольно разрушаются с выделением жидкой концентрированной фазы в результате самопроизвольного уплотнения структурной сетки. При удалении низкомолекулярного растворителя (высушивании) гели, обычно, необратимо разрушаются.

22) Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении. Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Oснована на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа: Константа диссоциации определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:

Электроли́ты — вещества, расплавы или растворы которых проводят электрический ток вследствие диссоциации на ионы, однако сами вещества не проводят электрический ток. Примерами электролитов могут служить растворы кислот, солей и оснований. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов, и обладающие вследствие этого ионной проводимостью. Исходя из степени диссоциации все электролиты делятся на две группы

  1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).

  2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого. Неэлектролиты - вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы.

23) Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении. В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[Исходя из степени диссоциации все электролиты делятся на две группы-Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

24) Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня с грузом весом Р = p S, уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной.Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии.

25) Адсорбция— это процесс изменения концентрации у поверхности раздела двух фаз, а в более узком и употребительном — это повышение концентрации одного вещества (газ, жидкость) у поверхности другого вещества (жидкость, твердое тело). Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое — адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) — адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция. Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы)[1]. Основы термодинамики адсорбции были созданы Дж.Гиббсом в 70-е гг. XIX в. По Гиббсу, в равновесной двухфазной системе вблизи поверхности раздела фаз происходит некоторое изменение локальных значений всех экстенсивных свойств (кроме объема). Однако фазы считаются однородными вплоть до некоторой геометрической поверхности, разделяющей их. Поэтому значение какого-либо экстенсивного свойства для системы в целом не равно сумме значений этого свойства в однородных фазах и . Разность приписывается двухмерной поверхностной фазе, связанной с разделяющей поверхностью. Т.к. поверхностная фаза не имеет толщины, то V0= + и =— , где V- объем.Изложенные представления позволяют привести фундаментальное термодинамическое уравнение к виду:

26) Термодина́мика - раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. В отдельные дисциплины выделились химическая термодинамика, изучающая физико-химические превращения, связанные с выделением или поглощением тепла, а также теплотехника. Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

где

  •  — подведённая к телу теплота, измеренная в джоулях

  •  — работа, совершаемая телом против внешних сил, измеренная в джоулях Эта формула является математическим выражением первого начала термодинамики

Гомоге́нная систе́ма  — однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела). В гомогенной системе из двух и более химических компонентов каждый компонент распределен в массе другого в виде молекул, атомов, ионов. Составные части гомогенной системы нельзя отделить друг от друга механическим путем. Гетероге́нная систе́манеоднородная система, состоящая из однородных частей (фаз), разделенных поверхностью раздела. Однородные части (фазы) могут отличаться друг от друга по составу и свойствам. Число веществ (компонентов), термодинамических фаз и степеней свободы связаны правилом фаз. Примерами гетерогенных систем могут служить: жидкость — насыщенный пар; насыщенный раствор с осадком; многие сплавы. Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давленииФаза — гомогенная часть гетерогенной системы. В однокомпонентной системе разные фазы могут быть представлены различными агрегатными состояниями или разными полиморфными модификациями вещества. В многокомпонентной системе фазы могут иметь различный состав и структуру. В любом случае при наличии раздела фаз подразумевается принципиальная возможность перехода вещества из одной фазы в другую.

27) Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита. Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений[источник не указан 1105 дней], диоксида марганца[2], пероксида водорода. Расплавы1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl

K"катод"(-): Na+ + 1e = Na0

A"анод"(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl → (электролиз) 2Na + Cl2

Растворы1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl

K"катод"(-): 2H2O + 2e = H2 + 2OH

A"анод"(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl + 2H2O(электролиз) → H2 + Cl2 +2NaOH

28) Ката́лиз — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора, который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий. По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В последнем случае происходит процесс ингибирования, который нельзя считать 'отрицательным катализом', поскольку ингибитор в ходе реакции расходуется. Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой. Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:H2О2 + I → H2О + IO H2О2 + IO → H2О + О2 + I При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации. При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

29) Электродчасть электрохимической системы, включающая в себя проводник (металлический или полупроводниковый) и окружающий его раствор. Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или EO, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой как гальваническая ячейка всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) и восстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту. Стандартные электродные потенциалы даны при стандартных условиях. Однако, реальные ячейки могут действовать и при нестандартных условиях. При данном стандартном потенциале, потенциал при нестандартных эффективных концентрациях может быть вычислен с использованием уравнения Нернста:

Величины E0 зависят от температуры (кроме стандартного водородного электрода) и обычно относятся к стандартному водородному электроду при этой температуре. Для конденсированных фаз величины потенциалов также зависят от давления.

30) Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия. Растворение — переход молекул вещества из одной фазы в другую (раствор, растворенное состояние). Происходит в результате взаимодействия атомов (молекул) растворителя и растворённого вещества и сопровождается увеличением энтропии при растворении твёрдых веществ и её уменьшением при растворении газов. При растворении межфазная граница исчезает, при этом многие физические свойства раствора (например, плотность, вязкость, иногда — цвет, и другие) меняются. В случае химического взаимодействия растворителя и растворённого вещества сильно меняются и химические свойства — например, при растворении газа хлороводорода в воде образуется жидкая соляная кислота. По агрегатному состоянию растворы могут быть газообразными, жидкими и твердыми. Классификация растворов - Растворы веществ с молярной массой меньше 5000 г/моль называются растворами низкомолекулярных со–единений (НМС), а растворы веществ с молярной мас–сой больше 5000 г/моль – растворами высокомолеку–лярных соединений (ВМС).По наличию или отсутствию электролитической дис–социации растворы НМС подразделяют на два клас–са – растворы электролитов и неэлектролитов. Растворы электролитов – растворы диссоции–рующих на ионы солей, кислот, оснований, амфо-литов. Например, растворы KNО3, HCl, КОН, Аl(ОН)3 , глицина. Электрическая проводимость растворов электро–литов выше, чем растворителя. Растворы неэлектролитов – растворы веществ, практически не диссоциирующих в воде. Например, растворы сахарозы, глюкозы, мочевины. Электриче–ская проводимость растворов неэлектролитов мало отличается от растворителя. Растворы НМС (электролитов и неэлектролитов) на–зываются истинными в отличие от коллоидных раство–ров. Истинные растворы характеризуются гомоген–ностью состава и отсутствием поверхности раздела между растворенным веществом и растворителем. Раз–мер растворенных частиц (ионов и молекул) меньше 10-9м.

Аналітика