Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы БЖД 1-90.docx
Скачиваний:
0
Добавлен:
16.09.2019
Размер:
200.74 Кб
Скачать

53. Нормування рівнів виробничого шуму.

Нормування шуму для робочих місць регламентується санітарними нормами та державним стандартом. Для постійних шумів нормування ведеться по граничному спектру шуму. Граничним спектром зветься сукупність нормативних рівнів звукового тиску дев'яти стандартизованих октавних смугах частот із середньогео-метричними частотами 31,5,63,125, 500,1000,2000, 4000,8000 Гц. Кожен граничний спектр позначається цифрою, яка відповідає допустимому рівню звукового тиску (дБ) в октавній полосі із серед-ньогеометричною частотою 1000 Гц. Наприклад, граничний спектр ГС-75 означає, що в цьому граничному спектрі допустимий рівень звукового тиску в октавній смузі з середньогеометричною частотою 1000 Гц дорівнює 75 дБ.

Для орієнтовної оцінки приймається за характеристику постійного шуму на робочому місці рівень звуку в дБА, що вимірюється по шкалі «А» шумоміра і визначається за формулою: LA = 20\gPA/P0, де РА - середньоквадратичний звуковий тиск з урахуванням корекції шумоміра за шкалою, Па; Р0 = 2-10э - пороговий середньоквадратичний звуковий тиск, Па. У виробничих умовах часто шум має непостійний характер. Для цих умов найбільш зручно застосовувати середні величини, які звуться еквівалентним (по енергії) рівнем звуку Lem, що характеризує середнє значення енергії звуку в дБ А. Цей рівень вимірюється спеціальним інтегруючим шумоміром або розраховується. Для вимірювання рівнів звукового тиску і звуку використовують таку апаратуру: вимірювач шуму та вібрації ВШВ-1 (вимірювач шуму та вібрації); шумомір типу ПІ-71 з октавними фільтрами ОФ-5 і ОФ-6; шумомір PS 1-202 з октавними фільтрами OF-101 фірми RFT (Німеччина); шумоміри типу 2203, 2209 з октавними фільтрами типу 1613 фірми «Брюль і К'єр» (Данія).

У шумомірі звук, який сприймається мікрофоном, перетворюється на електричні коливання, які посилюються, проходячи крізь коригуючі фільтри і випрямник, а потім реєструються стрілковим або самописним приладом. Для прикладу наведемо норми допустимих рівнів шуму. На підприємствах вимірювання шуму на робочих місцях повинно проводитись не менше одного разу на рік.

54. Чим відрізняються між собою звук, ультразвук, інфразвук?

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).

Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью

Инфразву́к (от лат. infra — ниже, под) — упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0.001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем.