Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник по ГТ, усов1.doc
Скачиваний:
20
Добавлен:
13.09.2019
Размер:
3.46 Mб
Скачать

Глава 12.

ПРОИЗВОДСТВЕННЫЕ ЯДЫ

В индустриально развитых странах трудовая деятельность человека связана с воздействием на него разнообразных факторов производственной среды. Одним из наиболее масштабных проявлений такого влияния на работающих являются химические вещества в процессе их производства и применения.

В настоящее время известно более 5 млн. химических веществ, из которых 60 тыс. находят широкое применение. На международном рынке ежегодно появляется от 500 до 1000 новых химических соединений и смесей.

Ряд соединений обладают высокой токсичностью. Другие, менее токсичные, соединения представляют опасность для здоровья человека из-за высокой устойчивости, способности к накоплению, широкой распространенности в окружающей среде. Отдельные вещества вследствие физических и химических процессов способны превращаться в более токсичные соединения. Возможность загрязнения химическими веществами окружающей среды (в том числе и воздуха рабочей зоны) все более возрастает.

Наряду с этим научно-технический прогресс облегчает обоснование, разработку и проведение в жизнь мероприятий, направленных на предупреждение вредного воздействия химических веществ на работающих. Важная роль в этом принадлежит промышленной токсикологии.

Промышленная токсикология - раздел гигиены труда, изучающий действие на организм химических факторов (вредных веществ) с целью создания безвредных и безопасных условий труда на производстве.

Вредное вещество – вещество, которое при контакте с организмом человека в случае нарушения требований безопасности может вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующего поколений.

Из данного определения следует, что все химические соединения потенциально являются вредными веществами.

Основные задачи промышленной токсикологии были сформулированы в конце 20-х годов ХХ столетия Н.С. Правдиным. К их числу относятся: 1) гиеническое нормирование содержания вредных веществ в объектах производственной среды и в биосредах; 2) гигиеническая экспертиза токсических веществ; 3) гигиеническая стандартизация сырья и продуктов.

Гигиеническое нормирование, ограничивающее содержание вредных веществ путем установления предельно допустимых концентраций (ПДК), в воэдухе рабочей зоны и на коже, имеет особенно важное значение в оздоровлении условий труда.

Токсикологическая экспертиза представляет наиболее массовый вид токсикологической оценки вредных веществ, предусматривающий определение смертельных доз и концентраций при различных путях введения, адекватных путям поступления ядов в производственных условиях; определение кумулятивной активности их с последующим расчетом ориентировочного безопасного уровня воздействия (ОБУВ).

Гигиеническая стандартизация сырья и продуктов предусматривает ограничение содержания токсических примесей в промышленном сырье и готовых продуктах с учетом их вредности и опасности.

Классификации производственных ядов

Применяемые в промышленности химические соединения в зависимости от решаемых задач могут оцениваться с помощью различных видов классификаций. Наиболее частое применение находят классификации промышленных ядов: по характеру воздействия на организм человека (общетоксическое, раздражающее, сенсибилизирующее, канцерогенное, мутагенное, влияющее на репродуктивную функцию); по пути проникновения в организм (действие через дыхательные пути, пищеварительную систему, кожный покров); по химическим классам соединений (органические, неорганические, элементоорганические и др.); по степени токсичности (чрезвычайно токсичные, высокотоксичные, умеренно токсичные, малотоксичные); по степени воздействия на организм (вещества чрезвычайно опасные, вещества высокоопасные, вещества умеренно опасные, вещества малоопасные).

Общая характеристика действия ядов

Патологические процессы, развивающиеся при воздействии производственных ядов на организм, могут рассматриваться как проявление дезорганизации его функционального и структурного состояния, необходимого для нормальной жизнедеятельности. Характер и степень выраженности таких изменений при действии яда обусловлены его концентрацией (дозой), временем действия и периодом элиминации (выведения) из организма.

Действие экзогенных факторов на организм, отдельные его органы и системы осуществляется через рецепторный аппарат цитоплазматических мембран или их компоненты.

Во многих случаях рецепторы представляют собой ферменты. Например, оксигруппа серина, входящая как составная часть в молекулу фермента ацетилхолинэстеразы, служит рецептором для фосфорорганических соединений (хлорофос, карбофос и пр.), образующих с этим ферментом прочный комплекс. В итоге развивается специфический антихолинэстеразный эффект, сопутствующий воздействию большинства фосфорорганических соединений.

Кроме ферментов, рецепторами первичного действия ядов являются аминокислоты (гистидин, цистеин и др.), нуклеиновые кислоты, пуриновые и пиримидиновые нуклеотиды, витамины. Рецепторами часто бывают наиболее реакционно способные функциональные группы: сульфгидрильные, гидроксильные, карбоксильные, амин- и фосфорсодержащие, которые играют жизненно важную роль в метаболизме клетки. Наконец, в роли рецепторов могут выступать различные медиаторы и гормоны. Таким образом, первичное, специфическое действие ядов на организм обусловлено образованием комплекса: вещество + рецептор. Токсическое действие веществ по теории А. Кларка при этом пропорционально площади рецепторов, занятой молекулами этого вещества. Максимальное токсическое действие яда проявляется, когда минимальное количество его молекул способно связывать и выводить из строя наиболее жизненно важные клетки-мишени.

Наряду с этим в токсическом действии многих веществ отсутствует строгая избирательность. Их вмешательство в жизненные процессы основано не на специфических химических воздействиях с определенными клеточными рецепторами, а на взаимодействии со всей клеткой в целом. Этот принцип, вероятно, лежит в основе наркотического действия разнообразных органических и неорганических веществ, общим свойством которых является то, что они представляют собой неэлектролиты. Обнаружив это, известный советский токсиколог Н. В. Лазарев предложил термин «неэлектролитное действие» для обозначения всех эффектов, которые прямо определяются физико-химическими свойствами вещества (наркотическое, раздражающее, прижигающее, гемолитическое действие идр.).

Изложенные закономерности действия химических веществ касаются лишь первичных пусковых механизмов этого действия. Изменения в организме, возникающие вслед за первичными, характеризуются в зависимости от интенсивности воздействия общим и избирательным вовлечением в развивающийся патологический процесс обменных нарушений, функциональными и органическими поражениями различных органов и систем. При этом развиваются различные клинические синдромы.

Для действия некоторых промышленных ядов характерно поражение функций центральной и периферической нервной системы, проявляющееся нейроинтоксикациями или нейротоксикозами.

К классическим ядам, оказывающим преимущественное действие на нервную систему, относятся пары металлической ртути, марганец, соединения мышьяка, сероуглерод, тетраэтилсвинец. Нейротропным действием обладают фосфорорганические ингибиторы холинэстеразы и многие наркотические вещества, в том числе углеводороды предельного, непредельного и циклического ряда, а также все нейротропные лекарственные препараты.

Клиническая картина большинства острых нейроинтоксикаций выражается совокупностью психических, неврологических, сома-товегетативных симптомов, являющихся следствием сочетания прямого токсического воздействия на различные структуры нервной системы, а также развившегося в результате интоксикации поражения ряда органов и систем.

Изменения крови при действии промышленных ядов можно условно разделить на общие гематологические реакции и специфические изменения. Общие гематологические реакции возникают при острой интоксикации любым токсическим веществом независимо от механизма его действия. При этом наиболее закономерными являются изменения со стороны белой крови: нейтрофильный лейкоцитоз со сдвигом лейкоцитарной формулы влево, эозинопения, лимфопения, увеличение числа моноцитов.

Под специфическими изменениями крови следует понимать такие нарушения в ее составе, которые обусловлены действием определенного вредного химического фактора производственной среды (бензол, хлорпроизводные бензола, хлорорганические пестициды, оксид углерода, свинец, акрилаты и др.). При этом развиваются заболевания крови, которые по нозологическим формам соответствуют таковым в общей гематологической клинике - гипопластические состояния, лейкозы, гемолитические процессы, гинерсидеремическая анемия, нарушение свертываемости крови.

Преимущественно поражения органов дыхания возникают при остром ингаляционном воздействии токсических веществ раздражающего действия. При этом возможно развитие нескольких основных клинических синдромов: острый токсический ларингофаринготрахеит; острый токсический бронхит, характеризующийся диффузным поражением бронхов крупного и среднего калибра; острый токсический бронхиолит - поражение мелких бронхов и бронхиол; острый токсический отек легких; острая токсическая пневмония. При хронических поражениях органов дыхания возможно развитие не только токсического бронхита, но и токсического пневмосклероза.

Поражение гепатобилиарной системы возникает в результате воздействия на организм химических веществ, которые можно выделить в группу так называемых гепатотропных ядов К их числу относятся хлорированные углеводороды – метилхлорид, метиленхлорид, хлороформ, четыреххлористый углерод, дихлорэтан и др. Для клинической картины интоксикации при действии гепатотропных ядов характерно развитие холестаза и токсического гепатита.

Поражения мочевыделительной системы во многом зависят от химического состава токсических веществ, предшествующего состояния почек и организма. Химические соединения по преимущественной локализации и характеру вызываемого ими патологического процесса в почках можно разделить на 2 группы. К 1-й группе относятся те химические соединения, которые преимущественно поражают паренхиму почек и вызывают так называемые токсические нефропатии. Это металлы и их соединения (ртуть, свинец, кадмий, литий, висмут, золото и др.), соединения мышьяка органические растворители, различные ядохимикаты (ртутьорганические, хлор- и фосфорорганические соединения), бета-нафтол и др. Для каждого из приведенных ядов характерна специфическая картина интоксикации, но общим для них является вовлечение в патологический процесс почек, развитие токсической нефропатии, которая особенно в случаях острой интоксикации может играть доминирующую роль в клинической картине отравления.

Ко 2-й группе относятся в основном ароматические аминосоединения (бензидин, дианизидин, альфа- и бета-нафтиламин). Длительный контакт с этими соединениями при неудовлетворительных санитарно-гигиенических условиях труда может привести к возникновению дизурических явлений и развитию доброкачественных опухолей мочевыводящих путей, преимущественно мочевого пузыря (папиломы), с последующей трансформацией в рак, что позволяет рассматривать их в качестве канцерогенов.

Пути поступления производственных ядов в организм

Производственные яды могут поступать в организм через дыхательные пути, желудочно-кишечный тракт и неповрежденную кожу, а также через слизистые оболочки глаз. Через дыхательные пути яды проникают в организм в виде газов, паров, аэрозолей, а также паро-газо-аэрозольных смесей. Попадание ядов через желудочно-кишечный тракт возможно при заглатывании со слизью из носоглотки, а также в результате несоблюдения правил личной гигиены или с пищей и питьевой водой.

Через кожу проникают в основном вещества, хорошо растворимые в жирах и воде, в частности органические растворители, а также соли некоторых металлов, например, ртути, свинца и др.

Дыхательный путь поступления ядов в организм. Всасывание ядовитых соединений через слизистые оболочки дыхательной системы является основным и наиболее быстрым путем поступления их в организм. Это объясняется очень большой поверхностью легочных альвеол (по подсчетам она составляет 100 - 120 м2) и постоянным током крови по легочным капиллярам, что способствует проникновению веществ из альвеол в кровь, которая транспортирует поступивший яд по всему организму.

Установлена определенная закономерность поступления ядов через легкие для 2 больших групп химических соединений. 1-ю группу составляют так называемые нереагирующие пары и газы, к которым относятся пары всех углеводородов ароматического и жирного ряда и их производные; 2-ю группу составляют реагирующие газы. К ним относятся такие яды, как аммиак, сернистый газ, оксиды, азота и другие.

Всасывание нереагирующих газообразных и парообразных неэлектролитов осуществляется в лёгких по закону простой диффузии в направлении падения градиента концентрации. Скорость насыщения такими веществами определяется их физико-химическими свойствами. При вдыхании яда в постоянной концентрации содержание его в крови сначала быстро нарастает, а затем устанавливается примерно на одном уровне. Содержание яда в венозной крови и дальнейшее насыщение крови газами или парами прекращается. Предельное содержание яда в крови зависит от его физико-химических свойств, из которых наибольшее значение имеет коэффициент распределения (К), который представляет собой отношение концентрации паров в артериальной крови к концентрации их в альвеолярном воздухе:

К = (Концентрация в артериальной крови / Концентрация в альвеолярном воздухе)

Чем выше значение этого коэффициента, тем больше вещества из воздуха поступает в кровь. Значение коэффициента распределения сказывается также и на скорости, с которой устанавливается равновесие между содержанием веществ в воздухе и крови. Неэлектролиты с высоким коэффициентом распределения (ацетон) длительно переходят из воздуха в кровь, а соединения с низким коэффициентом распределения (углеводороды) быстро достигают равновесной концентрации между кровью и воздухом.

Реагирующие пары и газы задерживаются при вдыхании в организме с постоянной скоростью, не меняясь во времени. Это объясняется тем, что они быстро подвергаются химическим превращениям непосредственно в дыхательных путях или сразу после их резорбции в кровь.

Поступление ядов через желудочно-кишечный тракт. Некоторые ядовитые соединения могут всасываться уже из полости рта, поступая непосредственно в кровь. Из полости рта всасываются все липидорастворимые соединения, фенолы, некоторые соли, особенно цианиды.

Резорбция яда из желудка зависит в значительной степени от реакции желудочного сока, образования слизи, характера пищи, а также кровоснабжения слизистой оболочки желудка.

Кислая среда желудочного сока может увеличивать токсичность некоторых химических веществ. Так, соединения плохо растворимые в воде, хорошо растворяются в желудочном соке и поэтому легко всасываются. Из желудка всасываются все липидорастворимые соединения, неионизированные молекулы органических веществ.

Всасывание ядов происходит также и в тонком кишечнике. На резорбцию ядов при этом существенно влияют изменения реакции среды, ферменты, свойства соединения. А такие, например, металлы, как церий, медь, уран, соединения ртути, повреждают эпителиальный покров и нарушают всасывание. Липидорастворимые вещества хорошо всасываются путем диффузии. Сильные кислоты и основания всасываются медленно, образуя комплексы с кишечной слизью. Вещества, близкие по строению к природным соединениям, всасываются через слизистую оболочку путем активного транспорта, т. е. как и питательные вещества.

Поступление ядов через кожу. Через неповрежденную кожу в производственных условиях может проникать значительное количество химических соединений. Существуют 3 пути возможного проникновения ядов через кожу: через эпидермис, волосяные фолликулы и выводные протоки сальных и потовых желез. Эпидермис можно рассматривать как липопротеиноный барьер через который быстро проходят только растворимые в липидах органические вещества. Эпидермальная проницаемость – 1-я фаза проникновения яда, 2-й фазой является эвакуация проникших соединений из дермы в кровь. Таким образом, потенциальную опасность представляют вредные вещества, обладающие не только растворимостью в жирах, но и значительной растворимостью в воде (крови).

Среди органических промышленных ядов, вызывающих интоксикацию при проникновении через кожу, наиболее опасны ароматические нитро- и аминосоединения, фосфорорганические инсектициды, некоторые хлорированные и металлорганические соединения. Электролиты практически через неповрежденную кожу не проникают. Повреждения кожи, безусловно, способствуют проникновению токсических веществ в организм.

Распределение, превращение и выделение ядов из организма

Распределение ядов подчиняется определенным закономерностям. Промышленные органические яды в подавляющем большинстве являются неэлектролитами. Основные закономерности распределения неэлектролитов между кровью и различными тканями организма сводятся к тому, что сразу же после поступления в кровь неэлектролит разносится по всем тканям и органам и соответственно задерживается в них. В этой первой фазе распределения основное значение для накопления вещества играет кровоснабжение ткани или органа - чем оно больше, тем больше содержание вещества. Таким образом, в первый период можно говорить о динамическом распределении вещества, определяемом интенсивностью кровоснабжения.

Однако в дальнейшем картина меняется. С течением времени все большую роль в распределении начинают играть собственно сорбционные свойства тканей. Постепенно происходит перераспределение веществ с преимущественным их накоплением в тканях, сорбционная емкость которых оказывается для данных веществ наибольшей. Окончательное распределение можно назвать статическим.

Для липидорастворимых веществ наибольшей емкостью, например, обладает жировая ткань и органы, богатые липидами (костный мозг, семенники и некоторые другие). Для ряда металлов (серебро, марганец, хром, кобальт, ванадий, кадмий, цинк) характерно достаточно быстрое исчезновение их из крови с наибольшим накоплением в печени и почках. Остальные органы равномерно включаются в распределение элементов.

Растворимые и хорошо диссоциирующие соединения свинца, бериллия, бария, урана, склонные к образованию прочных связей с кальцием и фосфором, накапливаются преимущественно в костной ткани.

Превращение вредных веществ в организме. Чужеродные органические соединения в организме претерпевают широкий ряд метаболических превращений. Их можно обобщенно подразделить на превращения, которые катализируются ферментами эндоплазматического ретикулума печени и других тканей, и на превращения, катализируемые ферментами, локализованными в других местах (немикросомальные). Основываясь на химической природе этих реакций, их можно классифицировать следующим образом.

Окисление микросомальными ферментами: гидроксилирование ациклических, ароматических соединений, N-гидроксилирование аминов, S-окисление, дезаминирование и сульфирование.

Восстановление микросомальными ферментами: восстановление нитро- и азосоединений.

Немикросомальное окисление: дезаминирование, окисление спиртов и альдегидов, ароматизация алициклических соединений.

Немикросомальное восстановление: восстановление альдегидов и кетонов.

Гидролиз: гидролиз сложных эфиров и амидов с участием микросомальных и немикросомальных ферментов.

Прочие реакции: к ним относятся дегидроксилирование катехолов и гидроксамовых кислот, дегалогенирование, разрыв кольца, образование кольца, восстановление ненасыщенных соединений, восстановление дисульфидов и тиолы и др.

Продукты этих метаболических превращений затем могут подвергаться: а) выделению без дальнейших изменений; б) конъюгации с последующим выделением; в) метаболизму посредством нормальных процессов межуточного обмена.

Соединения, особенно с несколькими функциональными группами, могут метаболизироваться посредством более чем одной из этих реакций, давая ряд различных метаболитов.

Схема превращений вредных веществ в организме в самом общем виде представлена по схеме 1.

Схема 1

Превращение вредных веществ в организме

 

 

 

 

 

 

 

 

 

Эндоплазматический ретикулум клеток печени и других тканей представляет собой липопротеиновую канальцевую сеть, распространяющуюся от стенки клетки через всю цитоплазму. Имеет 2 типа ретикулума: шероховатый эндоплазматический ретикулум, поверхность которого усыпана рибосомами, являющимися местом синтеза белков, и гладкий эндоплазматический ретикулум, который не имеет рибосом. Наибольшая ферментативная активность связана с гладким эндоплазматическим ретикулумом. По-видимому, синтез ферментов происходит в шероховатом ретикулуме, но при насыщении ферментами он лишается своих рибосом и превращается в гладкий ретикулум.

Биологическое окисление, катализируемое системами микросомальных ферментов, включает широкий круг реакций, но все они могут быть сведены к одному общему механизму, а именно к гидроксилированию.

Реакции микросомального окисления протекают по следующим схемам.

1. Гидроксилирование ароматического кольца:

C6H5R ------- HOC6H4R

2. Гидроксилирование боковой цепи (ациклическое):

RCH3 ------ RCH2OH

3. N-дезалкилирование:

R-NH-CH3 ----- [R-HCH2OH] ----- RNH2 + HCOH

4. О-дезалкилирование:

R-О-СН3 ----- [R-O-CH2OH] ----- ROH + HCOH

5. Дезаминирование:

R-CH(NH2)CH3 ----- [RCOH(NH2)CH3] ----- R-CO-CH3 + NH3

6. Образование сульфоксида:

R-S-СН3 ----- [R-S-CH2OH] ----- R-SO-СН3

Для всех этих реакций требуется восстановленный кофермент НАДФН2 и кислород. Восстановленный никотинадениндинуклеотидфосфат превращает кислород в активную молекулярную форму: активированный кислород в присутствии различных гидроксилаз гидроксилирует чужеродное соединение.

Микросомальные реакции восстановления не так универсальны, как окислительные. Предполагаются следующие этапы восстановления, включающие, по-видимому, и неферментативную фазу: микросомальный ферментативный комплекс НАДФН2 – цитохром-С-редуктаза или НАД-Н2 (никотинамидадениннуклеотид) - цитохром -В-редуктаза восстанавливает ФАД (флавинадениннуклеотид) в ФАД-Н2. Последний неферментативно восстанавливает ядовитое соединение:

ФАДН2 + R-NO2 ----- ФАД + RNH2 + 2Н2О

Немикросомальные реакции окисления, восстановления и гидролиза катализируются многими ферментными системами. Например, в растворимой фракции гомогенатов печени, почек и легких содержится алкогольдегидрогеназа, которая быстро окисляет многие первичные спирты в соответствующие альдегиды. Необходимым коферментом этих реакций является НАД или НАДФ и участие цитохрома Р-450.

Алкогольдегидрогеназа

СН3СН2ОН + НАД ----- СН3-СOH + НАД-Н2

Известно несколько типов немикросомального восстановления: восстановление двойных связей, дисульфидов, сульфоксидов и др.

Гидролитическому расщеплению подвергаются сложные эфиры и амиды кислот. В этом процессе участвуют ферменты (эстеразы, амидазы), находящиеся в печени и в плазме крови:

Эстераза

RCOOR' + Н2О ----- RCOOH + R'OH

Амидаза

RCOHNH2 ----- RCOOH + NH3

После первичных реакций биотрансформации ядовитые соединения могут приобретать химические активные группы (ОН, СООН, NH2, SH и др.), которые вступают в реакцию конъюгации с эндогенными субстратами: глюкуроновой кислотой, сульфатом, уксусной кислотой, некоторыми аминокислотами. В результате образуются более полярные молекулы, легко выделяющиеся из организма с мочой. Таким образом в организме трансформируются фенолы, спирты, карбоновые кислоты, аминосоединения и другие.

Металлы и их соединения, попадая в организм, могут многократно менять свою форму. Большую часть пребывания в организме они существуют в виде комплексов с белками. Исключение составляют щелочные и частично щелочноземельные металлы. Первые содержатся в жидкой фазе в ионной форме, частично образуют непрочные, легко гидролизуемые комплексы. Металлы соединяются с активными группами биокомплексов: ОН, СООН, НРО3 и лимонной кислотой. Существует сродство отдельных металлов к белкам и аминокислотам. С аминокислотами через SH-группы соединяются Hg, Pb, Co, Cd; через СООН-группы - Сu, Ni, Zn, Mg, Ca. Металлы, преимущественно с переменной валентностью, подвергаются в организме восстановлению и окислению. Так, пятивалентный мышьяк восстанавливается в организме до более токсичного трехвалентного.

Выделение вредных веществ из организма. Токсичные вещества выделяются через легкие, почки, желудочно-кишечный тракт, кожу. При этом яды могут выделяться несколькими путями одновременно.

Скорость выведения вредных веществ обычно наибольшая в первые дни и недели после поступления их в организм, а в дальнейшем она замедляется. Для характеристики ее может быть использован биологический период полувыведения - время, необходимое для уменьшения в организме или отдельных органах концентрации вещества на 50%.

Выделение через легкие. Многие летучие неэлектролиты в основном выделяются из организма в неизмененном виде с выдыхаемым воздухом. Скорость выделения паров и газов зависит от растворимости их в воде. Чем она меньше, тем быстрее происходит выделение яда, находящегося в крови и органах. Более медленно выделяются вредные вещества, депонированные в жировой ткани.

Через легкие могут выделяться также летучие метаболиты, образующиеся при биотрансформации яда. Такими конечными метаболитами могут быть вода и углекислота.

Выделение через почки. Выделение ядов через почки осуществляется путем пассивной фильтрации и активным транспортом. В почечных канальцах неэлектролиты, хорошо растворимые в липидах, путем пассивной диффузии могут проникать в двух направлениях - из канальцев в кровь и из крови в канальцы. Направление пассивной канальцевой диффузии слабоионизированных органических электролитов зависит от реакции мочи. Если канальцевая моча более щелочная, чем плазма, в мочу легко проникают слабые органические кислоты; если реакция мочи более кислая, в нее диффундируют слабые органические основания. Образующиеся в процессе биотрансформации многих ядов конъюгаты с серной и глюкуроновой кислотами концентрируются в моче благодаря активному канальцевому транспорту, достигая при этом высокой степени накопления.

Почками быстро выделяются металлы, циркулирующие в виде ионов и в молекулярно-дисперсном состоянии. К ним следует отнести литий, рубидий, цезий. Хорошо экскретируются с мочой соли двухвалентных металлов (Be, Cd, Сu). Комплексообразование способствует выделению металлов. Металлы могут выделяться не только в свободном, но и в связанном виде. Так, например, свинец и марганец экскретируются как в ионной форме, так и в виде органических комплексов.

Выделение через желудочно-кишечный тракт. Выделение промышленных ядов через желудочно-кишечный тракт начинается уже во рту со слюной. В слюне обнаруживаются некоторые неэлектролиты и тяжелые металлы, например, ртуть, свинец и др. Ядовитые соединения, поступающие в организм, попадают в печень. Из печени с желчью их метаболиты транспортируются в кишечник и выделяются из организма.

Металлы выделяются также через желудочно-кишечный тракт. Они задерживаются в печени и с желчью выделяются в кишечник. В процессе выделения через желудочно-кишечный тракт имеет значение форма, в которой металл накапливается в депо. Металлы длительно сохраняются в печени и полностью выделяются с калом.

Выделение прочими путями. Промышленные яды могут выделяться из организма также с грудным молоком и через кожу с потом. С грудным молоком кормящих женщин выделяются хлорированные углеводороды, главным образом инсектициды (ДДТ, гексахлоран и др.), ртуть, селен, мышьяк и др.

Через кожу выделяются из организма многие неэлектролиты: этиловый спирт, ацетон, фенол, фторированные углеводороды и др. Известно, что содержание сероуглерода в поте превышает erо концентрацию в моче в три раза.

Условия, влияющие на характер и силу токсического действия

Токсичность - это мера несовместимости вредного, вещества с жизнью. Степень токсического эффекта зависит от биологических особенностей вида, пола, возраста и индивидуальной чувствительности организма; строения и физико-химических свойств яда; количества попавшего в организм вещества; факторов внешней среды (температура, атмосферное давление и др.).

Химическая структура и характер действия ядов. Токсическое действие органических соединений в определенной степени зависит от их строения и свойств.

Известно, что рдзветвление цепи углеродных атомов неэлектролитное действие. Соединения с нормальной углеродной цепью оказывают более выраженный токсический эффект по сравнению со своими разветвленными изомерами. Так, нормальные пропиловый и бутиловый спирты более сильные наркотики, чем соответствующие изопропиловый и изобутиловый; пропилбензол сильнее изопропилбензола, октан - изооктана. Циклические углеводороды, обладающие одной длинной боковой цепью, оказываются более токсичными, чем их изомеры, обладающие двумя или несколькими боковыми цепочками. Например, пары диметилциклогексана действуют слабее, чем пары этилциклогексана.

Замыкание цепи углеродных атомов ведет к увеличению силы действия углеводородов при их ингаляционном поступлении. Пары циклопропана, циклопентана, циклогексана и их гомологов действуют сильнее, чем пары соответствующих метановых углеводородов, пропана, пентана, гексана. Переход от полиметиленового кольца к ароматическому ведет к увеличению силы неэлектролитного действия при ингаляционном пути поступления: пары бензола и толуола действуют соответственно сильнее паров циклогексана и метилциклогексана.

При введении в молекулу гидроксильной группы, увеличивается растворимость и ослабляется сила действия соединения: спирты менее токсичны, чем соответствующие углеводороды.

Введение галогена в молекулу органического соединения почти всегда сопровождается усилением токсичности и появлением новых токсических эффектов, характерных для специфически действующих ядов. Существенное значение в токсичности имеет место присоединения галогена - атом галогена, находящийся в открытой цепи, гораздо более активен, чем связанный с углеродом циклической или ароматической молекулы.

Введение в молекулу нитро- (NO2), нитрозо- (N0) или аминогруппы (NH2) резко изменяет токсические свойства соединения. Для алкилэфиров азотной и азотистой кислот, где группы NO2 и N0 связаны с кислородом, типично сосудорасширяющее и гипотензивное действие (этилнитрит, амилнитрит, этилнитрат, нитроглицерин). Для нитрозосоединений жирного и ароматического ряда, где нитро- или нитрозогруппа связана с углеродом, а также для ароматических аминов характерно действие на ЦНС и метгемоглобинобразование. Особенно высока токсичность нитро- и ами-нопроизводных ароматических углеводородов (нитробензол, анилин, толуидины, ксилидины). Прямой зависимости между силой действия и количеством нитро- и аминогрупп нет. По всей вероятности, общий характер токсического действия амино- и нитро-соединений зависит от сходства их судьбы в организме. Введение в молекулу химического соединения кратных связей (ненасыщенность соединения) приводит к усилению его способности к химическим реакциям и, следовательно, к повышению токсичности.

Более высокой химической активностью обусловлены и раздражающие свойства ненасыщенных соединений, таких как акролеин, дивинил, дивинилацетилен, стирол, винилацетат и многих других.

Видовые различия и чувствительность к ядам. О различной видовой чувствительности к ядам известно давно. Знание особенностей возникновения, развития и протекания интоксикации у животных различных видов очень важно для токсикологов потому, что данные о токсичности тех или иных вредных веществ, получаемые в экспериментальных условиях в опытах на животных, чаще всего экстраполируются на человека. В ряде случаев различия в чувствительности человека и животных к ядам обусловлены особенностями метаболизма, различиями в продолжительности жизни, массой тела и др.

Пример различной видовой чувствительности можно привести на основании данных Г. Н. Красовского об изоэффективных дозах (ДЕ50) ацетофоса для человека и животных, установленных по активности холинэстеразы крови (табл. 12).

Таблица 12. Изоэффектнвные дозы ацетофоса (ДЕ50 +/- m) для человека и животных, мг/кг

Объект наблюдения

Время наблюдения

1 ч

5 ч

Человек

5

3,5

Кролик

2,7

4,4

Морская свинка

6,4

6,0

Крыса

10,0

12,5

Мышь

24,0

28,5

Как видно из табл. 12, изоэффективные дозы ацетофоса различны для человека и животных, при этом они значительно отличаются у разных видов животных.

Влияние пола в формировании токсического эффекта не является однозначным. К некоторым ядам более чувствительны женщины, к другим - мужчины. Это в первую очередь обусловлено специфическими признаками поражения (влияние на гонады мужчин или женщин, эмбриотоксическое действие). Отмечается большая чувствительность женского организма к действию некоторых органических растворителей, например бензола. Установлено, что во время беременности опасность отравления повышается и отмечается более тяжелое ее течение. Некоторые яды, например соединения бора, марганца, обладают избирательной токсичностью в отношении гонад мужского организма.

Влияние возраста на проявление токсического эффекта при воздействии на организм различных ядов не является одинаковым. Одни яды оказываются более токсичными для молодых, другие - для старых; токсический эффект третьих не зависит от возраста.

В опытах на животных показано, что молодые особи более чувствительны к нитриту натрия, сероуглероду, кониозоопасной пыли; взрослые - к аллиловому спирту, диэтиловому эфиру, гранозану; старые животные к аминазину, фтору, дихлорэтану.

Индивидуальная чувствительность к ядам выражена довольно значительно и зависит от особенностей течения биохимических процессов у разных лиц (так называемая биохимическая индивидуальность). Как указывалось выше, в превращении ядов непосредственное участие принимает большая группа ферментов. Активность этих ферментных систем различна у разных лиц.

Индивидуальная чувствительность определяется и состоянием здоровья. Например, лица с заболеваниями крови более чувствительны к действию кроветворных ядов, с нарушениями со стороны нервной системы - к действию нейротропных ядов, с заболеваниями легких - к действию раздражающих веществ и пылей. Снижению сопротивляемости способствуют хронические инфекции, например туберкулез.

На чувствительность организма к ядам оказывает влияние и характер труда. При тяжелой физической работе усиливаются процессы дыхания и кровообращения, что ведет к ускоренному поступлению яда в организм.

Интермитирующее воздействие вредных веществ. На производстве, как правило, не бывает постоянных концентраций вредных веществ в воздухе рабочей зоны в течение всего рабочего дня. Они либо постепенно увеличиваются, снижаясь за обеденный перерыв, и вновь увеличиваясь к концу рабочего дня, либо оказываются колеблющимися в зависимости от хода технологических процессов. Концентрации воздействующих веществ могут колебаться от нуля до превышающих предельно допустимые, т. е. в таких случаях имеет место интермиттирующее воздействие вредных веществ.

Слово «интермиттирующее», в точном смысле подразумевающее «перемежающееся» или «прерывистое», используется в токсикологии для обозначения действия концентраций вредного вещества колеблющихся во времени.

Из физиологии известно, что максимальный эффект наблюдается в начале и в конце воздействия раздражителя. Переход от одного состояния к другому требует приспособления, а потому частые и резкие колебания раздражителя ведут к более сильному воздействию его на организм, однако эффект усиления зависит и от других причин. Например, прерывистая затравка парами хлороформа вызывает более существенные сдвиги безусловного двигательного рефлекса, чем вдыхание воздуха с постоянной концентрацией этого яда. Вместе с тем подобные же опыты с этанолом не обнаруживают четких различий при двух режимах воздействия. Главную роль при интермиттирующем действии ядов играет сам факт колебаний концентраций в крови, а не накопление веществ. Расчет накопления чужеродного, медленно метаболизирующего вещества в организме при различной частоте перерывов экспозиции показывает, что при одной и той же концентрации в воздухе в организме накапливается тем больше вещества, чем больше суммарная экспозиция. Даже очень частые перерывы при одной и той же суммарной экспозиции не могут создать различия в накоплении больше чем в 2 раза по сравнению с непрерывной экспозицией, следовательно, накопление вещества при одинаковой концентрации мало зависит от режима частоты смен экспозиций и перерывов, если суммарная экспозиция одинакова. В конечном итоге колебания интенсивности химического фактора, как на высоком, так и на низком уровне воздействия ведут к нарушению процессов адаптации.

Комбинированное действие промышленных ядов. Человек в различных условиях современного промышленного и сельскохозяйственного производства все чаще и чаще подвергается воздействиям сложного комплекса неблагоприятных факторов. Комбинированное действие вредных веществ - это одновременное или последовательное действие на организм нескольких ядов при одном и том же пути поступления. Различают несколько видов комбинированного действия ядов.

1. Аддитивное действие – феномен суммированных эффектов, индуцированных комбинированным воздействием. При этом суммарный эффект смеси равен сумме эффектов действующих компонентов.

2. Потенцированное действие (синергизм) - усиление эффекта, действие больше, чем суммация.

3. Антагонистическое действие - эффект комбинированного воздействия, менее ожидаемого при простой суммации.

4. Независимое действие - комбинированный эффект не отличается от изолированного действия каждого яда. Преобладает эффект наиболее токсичного вещества.

Примером аддитвного действия является наркотическое действие смеси углеводородов. Часто встречаются комбинации веществ с независимым действием (бензол и раздражающие газы, смесь взрывных газов и пылей в рудниках и т. п.). Потенцирование отмечено при совместном действии сернистого ангидрида и хлора, алкоголь повышает опасность отравлений анилином, ртутью, цианамидом кальция и другими производственными .ядами.

Для гигиенической оценки воздушной среды при условии аддитивного действия ядов существует формула:

(С1/ПДК1) + (С2/ПДК2) + ……… (Сn/ПДКn) £ 1

где С1, С2, Сn - концентрация каждого вещества в воздухе; ПДК1, ПДК2, ПДКn - установленные для них ПДК.

Наряду с комбинированным действием ядов возможно и комплексное воздействие веществ.

Комплексным принято называть такое воздействие, когда яды поступают в организм одновременно, но разными путями (через дыхательные пути с вдыхаемым воздухом, желудок с пищей и водой, кожные покровы). В связи с нарастающим загрязнением вредными веществами окружающей человека среды значение этого пути поступления ядов возрастает.

Сочетанное воздействие химических и физических факторов производственной среды. Воздействие токсических веществ на организм человека в условиях производства не может быть изолированным от влияния других неблагоприятных факторов, таких, как высокая и низкая температура, повышенная, а иногда и пониженная влажность, вибрация и шум, различного рода излучения и др. При сочетанном воздействии вредных веществ с другими факторами эффект может оказаться более значительным, чем при изолированном воздействии того или иного фактора.

Температурный фактор. При одновременном воздействии вредных веществ и высокой температуры возможно усиление токсического эффекта.

Выраженность токсического эффекта при сочетанном воздействии с повышенной температурой может зависеть от многих причин: от степени повышения температуры, пути поступления яда в организм, концентрации или дозы яда. К одной из основных причин следует отнести изменение функционального состояния организма, нарушение терморегуляции, потери воды при усиленном потоотделении, изменение обмена веществ и ускорение многих биохимических процессов. Учащение дыхания и усиление кровообращения ведут к увеличению поступления ядов в организм через органы дыхания. Расширение сосудов кожи и слизистых повышает скорость всасывания токсических веществ через кожу и дыхательные пути. Высокая температура воздуха увеличивает летучесть ядов и повышает их концентрации в воздухе рабочей зоны. Усиление токсического действия при повышенной температуре воздуха отмечено в отношении многих летучих ядов: наркотиков, паров бензина, оксидов азота, паров рути, оксида углерода, хлорофоса и др. Понижение температуры в большинстве случаев ведет также к усилению токсического эффекта. Так, при пониженнои температуре увеличивается токсичность оксида углерода, бензина, бензола, сероуглерода и др.

Повышенная влажность воздуха. При повышенной влажности может увеличиваться опасность отравлений в особенности раздражающими газами. Причина, по-видимому в усилении процессов гидролиза, повышении задержки ядов на поверхности слизистых оболочек, изменении агрегатного состояния ядов. Растворение газов и образование мельчайших капелек кислот и щелочей способствует возрастанию раздражающего действия.

Изменение барометрического давления. Возрастание токсического эффекта зарегистрировано как при повышенном, так и при пониженном барометрическом давлении. При повышенном давлении возрастание токсического действия происходит по двум причинам: во-первых, вследствие усиленного поступления яда, обусловленного ростом парциального давления газов и паров в альвеолярном воздухе и ускоренным переходом их в кровь; во-вторых, вследствие изменения многих физиологических функций, в первую очередь дыхания, кровообращения, состояния ЦНС и анализаторов. При пониженном давлении первая причина отсутствует, но усиливается влияние второй. Например, при понижении давления до 500 - 600 мм рт. ст. токсическое действие оксида углерода возрастает в результате того, что влияние яда усиливает отрицательные последствия гипоксии и гиперкапнии.

Шум и вибрация. Производственный шум может усиливать токсический эффект. Это доказано для оксида углерода, стирола, алкилнитрила, крекинг-газа, нефтяных газов, аэрозоля борной кислоты.

Промышленная вибрация аналогично шуму также может усиливать токсическое действие ядов. Например, пыль кобальта, кремниевые пыли, дихлорэтан, оксид углерода, эпоксидные смолы оказывают более выраженное действие при сочетании действия с вибрацией по сравнению с воздействием чистых ядов.

Лучистая энергия. УФ-облучение может понижать чувствительность белых мышей к этиловому спирту вследствие усиления окислительных процессов в организме и более быстрого обезвреживания яда. Известно об уменьшении токсического эффекта оксида углерода при УФ облучении. Причина этого – ускорение диссоциации карбоксигемоглобина и более быстрое выведение оксида углерода из организма.

Физическая нагрузка. Работающий соприкасается с промышленными ядами, как правило, выполняя одновременно большую или меньшую физическую работу. Физическая нагрузка, оказывающая мощное и разностороннее влияние на все органы и системы организма, не может не отразиться на условиях резорбции, распределения, превращения и выделения ядов, а в конечном итоге - на течении интоксикации.

Динамические физические нагрузки активизируют основные вегетативные системы жизнеобеспечения - дыхание и кровообращение, усиливают активность нервно-эндокринной системы, а также многие ферментативные процессы. Увеличение легочной вентиляции приводит к возрастанию общей дозы газообразных веществ и паров, проникающих в организм через дыхательные пути; В связи с этим увеличивается опасность отравления наркотиками, раздражающими парами и газами, токсическими пылями. Более быстрому распределению яда в организме способствует увеличение скорости кровотока и минутного объема сердца. Повышение функциональной активности печени, желез внутренней секреции, нервной системы и увеличение кровоснабжения в интенсивно работающих органах может сделать их более доступными действию яда.

Усиление токсичности при физических нагрузках отмечается при воздействии паров хлористого водорода, четыреххлористого углерода, некоторых веществ антихолинэстеразного действия, дихлорэтилсульфида, свинца, оксида углерода. Работа, может влиять не только на «силу» действия яда, но и на локализацию повреждения – парезы и параличи при ртутной и свинцовой интоксикации развиваются в первую очередь на интенсивно работающей руке.

Адаптация к ядам

В настоящее время в связи с улучшением условий труда и снижением концентрации вредных веществ в воздухе рабочей зоны случаи с четко выраженными симптомами хронической интоксикации становятся крайне редкими. Значительно чаще встречаются ее стертые формы, которые являются результатом длительного воздействия промышленных ядов в малых дозах и низких концентрациях. Возможно и развитие адаптации.

Адаптация к действию химических веществ - истинное приспособление организма к изменяющимся условиям окружающей среды (особенно химическим), которое происходит без необратимых нарушений данной биологической системы и без превышения нормальных (гомеостатических) способностей ее реагирования.

Долгое время считалось, что адаптация возможна лишь к отдельным веществам и что она вообще не может развиваться по отношению к ядам кумулирующим в организме. В настоящее время установлено, что адаптация в какой-то мере и на некоторый срок при соответствующих условиях возникает к любому вредному веществу. Для развития адаптации к хроническому воздействию яда необходимо, чтобы его концентрации (дозы) были достаточными для вызова ответной приспособительной реакции, но чтобы они не были чрезмерными, приводящими к быстрому и серьезному повреждению организма.

Показатели адаптации к яду могут быть специфическими и неспецифическими. В эксериментах, например, специфическими признаками адаптации могут быть: повышение пороговых концентраций или доз, отсутствие гибели или резкое уменьшение гибели животных после экспозиции CL50 данного вещества или введение DL50. К неспецифическим признакам относятся: восстановление существенно измененных в начале опыта интегральных показателей интоксикации, нормализация реакции на экстремальные воздействия и улучшение ответов на различные функциональные пробы. Срыв адаптации ведет к явной паталогии, которая характеризуется наличием симптомов, специфичных для действующего яда.

Острые и хронические профессиональные отравления.

Острым профессиональным отравлением называется заболевание, возникшее после однократного воздействия вредного вещества на работающего. Острые отравления могут иметь место в случае аварий, значительных нарушений технологического режима, правил техники безопасности и промышленной санитарии, когда содержание вредного вещества значительно, в десятки и сотни раз, превышает предельно допустимую концентрацию. Возникающее в результате этого отравление может окончиться быстрым выздоровлением, оказаться смертельным, либо вызвать последующие стойкие нарушения здоровья.

При чистке цистерн высокие концентрации паров бензина являются причиной быстро наступающего отравления, которое может закончиться гибелью от паралича дыхательного центра, если пострадавшего сразу же не вынести на свежий воздух. Столь же быстрая гибель угрожает при вдыхании больших концентраций сероводорода, вызывающих тканевую аноксию.

Однако в отличие от смертельных исходов острого отравления парами бензина или сероводорода острое и даже смертельное отравление бромистым метилом выявляется после скрытого периода длительностью не менее 6 - 8 ч. Позднее развиваются признаки отравления в виде подергиваний, эпилептиформных судорог, затем следует потеря сознания и смерть. Особенно коварными являются отравления оксидами азота из-за длительного (дни, недели) латентного периода, после которого может развиться тяжелый, зачастую смертельный отек легких.

Во многих случаях следствием перенесенного отравления являются стойкие нарушения здоровья. Так, в течение месяцев и даже лет после острого отравления бромистым метилом могут сохраняться неверная походка, повышенная утомляемость, забывчивость, ослабление зрения, парезы периферических нервов; после отравления сероуглеродом - расстройство чувствительности, нарушение рефлексов, дефекты зрения и расстройство психической деятельности.

Хроническим отравлением называется заболевание, развивающееся после систематического длительного воздействия малых концентраций или доз вредного вещества. Имеются в виду дозы, которые при однократном поступлении в организм не вызывают симптомов отравления.

Для промышленных ядов характерны только хронические отравления. Причиной этого может быть тот факт, что концентрации, вызывающие острое отравление, в производственных условиях практически недостижимы. Таковы свинец, марганец, тринитротолуол, пары ртути. В других случаях хроническое отравление в условиях практики не может быть вызвано ядом из-за быстрого его расщепления в организме или выведения. Так, двухвалентное железо - парализующий яд, но оно чрезвычайно быстро окисляется в организме в трехвалентное комплексное соединение, и производственные отравления железом не встречаются.

Отдаленные последствия влияния ядов на организм

Вредные вещества могут оказывать на организм специфическое действие, которое проявляется не в период воздействия и не сразу по его окончапии, а в периоды жизни, отделенные от периода химической экспозиции многими годами и даже десятилетиями. Проявление этих эффектов возможно и в последующих поколениях.

Возможность отдаленных последствий воздействия химических веществ является важной гигиенической проблемой, поскольку на современном этапе необходимо найти пути профилактики с тем, чтобы не допустить неблагоприятные последствия для последующих поколений.

Под термином «отдаленный эффект» следует понимать развитие патологических процессов и состояний у индивидуумов, имевших контакт с химическими загрязнениями среды обитания в отдаленные сроки их жизни, а также в течение жизни нескольких поколений их потомства. К нему относят гонадотропное, эмбриотоксическое, канцерогенное, мутагенное действие, а также ускорение процесса старения сердечно-сосудистой системы под влиянием химических соединений.

Изучение отдаленных эффектов при обосновании санитарных стандартов необходимо для повышения их надежности.

Гонадотропное действие химических соединений. По укоренившемуся мнению, ответственность за бесплодие брака ранее возлагалась почти исключительно на женщину. Однако сейчас уже известно, что в значительном числе случаев «виновником» бесплодия брака может быть мужчина. Причиной этого является высокая чувствительность мужских половых желез к различным повреждающим факторам. Выявлена связь нарушения репродуктивной функции человека с действием факторов окружающей среды, производственными факторами, и в частности с химическими, воздействующими на человека в процессе его трудовой деятельности.

Так, доказано нарушение функции гонад при воздействии бензола и его гомологов, хлорорганических соединений; марганца, хлоропрена, капролактама, борной кислоты, фенола, свинца.

Имеются также данные о нарушении менструальной функции и функции яичников у женщин, работающих в производстве изопренового каучука, стирола, капролактама, при работе с соединениями марганца.

Гонадотропное действие проявляется нарушением сперматогенеза у мужчин и овогенеза у женщин.

При изучении гонадотропного действия в промышленной токсикологии используются методы, изложенные в методических рекомендациях «Методы экспериментального исследования по установлению порогов действия промышленных ядов на генеративную функцию с целью гигиенического нормирования», утвержденных М3 СССР.

Для выявления гонадотропного действия у мужских особей при нормировании используют следующие методы: функциональный (длительность или скорость движения сперматозоидов, выносливость их по отношению рН среды, осмотическая стойкость, количество патологических форм); морфологические (онтогенетический анализ стадии развития сперматогенного эпителия, контроль за величиной и весом гонад); биохимические (определение общего содержания нуклеиновых кислот, характеристика их синтеза и распада).

При изучении овогенеза используются морфометрические и функциональные методы оценки состояния яйцеклеток.

Изучение сравнительной чувствительности репродуктивной функции самок и самцов в ряде случаев выявило одинаковую и даже большую чувствительность семенников при одних и тех же интенсивностях воздействия. Одинаковая чувствительность мужских и женских половых желез имеет место при воздействии борной кислоты, соединений марганца, хлоропрена. Это свидетельствует о том, что защита будущих поколений не может ограничиваться рамками проблемы женского труда. Должна учитываться возможность специфического действия на репродуктивную функцию как женского, так и мужского организма.

Эмбриотропное действие промышленных ядов. Влияние химических соединений во время беременности может вызвать в развитии плода различные нарушения, которые условно можно отнести к следующим типам эффектов: тератогенным (гистоморфологические дефекты развития, биохимические, функциональные и другие нарушения функции органов и систем, проявляющиеся в постнатальном развитии); эмбриотоксическим (внутриутробная гибель, снижение массы и размеров эмбрионов при нормальной дифференцировке тканей).

При действии ряда химических соединений, когда концентрации яда в воздухе рабочей зоны превышали ПДК, было установлено их тератогенное действие. В частности, таким действием обладают хлоропреновый латекс, фенолформальдегидные смолы и др. Имеются данные клинических и экспериментальных исследований о влиянии гранозана и ДДТ на эмбриогенез и развитие потомства. Обследование работниц производства кремнийорганических лаков и эмалей выявило увеличение частоты появления токсикозов беременности и нарушений родовой деятельности. Обнаружены также качественные изменения в плаценте у женщин, занятых в производстве синтетического каучука.

При изучении эмбриотропного действия химических веществ в эксперименте большое значение имеет продолжительность воздействия яда, срока беременности, на которые приходится это действие, уровни воздействия, вид экспериментальных животных.

Для промышленной токсикологии, учитывая реальные условия воздействия яда на производстве, практический интерес представляет чувствительность эмбриона в течение всей беременности, в первые 3 мес беременности и в отдельные дни беременности (в основном в период органогенеза).

Чувствительность эмбриона особенно велика на ранних стадиях развития. Химические вещества в дозах, не вызывающих токсический эффект у матери, могут повредить плод. Установлено 2 критических периода развития эмбриона с очень высокой чувствительностью к внешним воздействиям – период предшествующий имплантации и период плацентации. 1-й период приходится на первые 3 недели развития, 2-й – на 4 – 7-ю неделю, когда происходит формирование плаценты.

Эмбриотоксическии эффект в значительной степени определяется состоянием плаценты.

Изменение проницаемости плаценты зависит от общего состояния организма и от срока беременности, а также от химического строения и свойств проникающих в организм матери химических соединений. Например, никотин делает плаценту проницаемой даже для тех веществ, которые в обычных условиях через нее не проходят. Поэтому дозы химических соединений, недостаточные чтобы вызвать токсический эффект у некурящей матери, у курящей - проникая через плаценту, могут оказывать неблагоприятное влияние на плод. Беременность как нагрузка может изменять устойчивость организма к воздействию различных факторов, в том числе и химических, в сторону снижения его резистентности, что также может явиться причиной нарушения развития потомства, вплоть до его гибели.

Изучение эмбриотропного действия химических веществ проводится в экспериментах на лабораторных животных при нескольких концентрациях. В качестве показателей эффекта действия определяется продолжительность беременности подопытных животных, эмбриональная смертность, число, масса, длина новорожденных, выявление тератогенного действия, прирост массы и развитие после рождения, т. е. исследование плода и потомства. Помимо этих исследований, изучается состояние организма самих беременных животных, т. е. общее токсическое действие. Анализ результатов проведенных экспериментов позволяет определить порог специфического действия, т. е. минимальные действующие концентрации и дозы, оказывающие эмбриотропное действие.

Мутагенное действие химических соединений. Под мутагенным действием химических веществ следует понимать изменение наследственных свойств организма, проявляющихся у его потомства.

Мутационный процесс дод влиянием химических веществ можно подразделить да 2 большие группы: мутагенез в зародышевых клетках и мутагенез в соматических клетках. Мутации под влиянием химических веществ могут возникать на всех трех уровнях организации наследственных структур: генном, хромосомном и геномном.

Следствием мутаций в зародышевых клетках в зависимости от их характера будет гибель зигот, эмбрионов, плодов, индивидов на разных стадиях развития или воспроизведение мутации из поколения в поколение. Мутации в соматических клетках приводят неизбежно к нарушению генетического гомеостаза и, следовательно, к связанным с этим последствиям.

В настоящее время установлено мутагенное действие для многих химических веществ. Этим действием, например, обладают хдоропрен, винилхлорид, окись этилена, диметилфталат.

Мутагенная активность химических веществ изучается в экспериментах на различных биологических объектах: плодовой мушке, вирусах и фагах, растениях, культуре тканей, лимфоцитах. Приведенный перечень биологических объектов уже сам по себе говорит о том, что мутации, возникающие в клетках индикаторных оргапизмов, в ряде случаев не могут быть идентичными с мутациями у млекопитающих. Например, для больших доз кофеина выявлен прямой мутагенный эффект на низких системах (дрозофиле и бактериях) и в то же время подобный эффект у человека не выявлен.

Наиболее распространенными методами изучения мутагенной активности химических веществ на лабораторных животных (белые крысы линии Wistar и белые мыши SHK) в настоящее время являются цитогенетический анализ клеток соматической ткани и метод доминантных летальных мутаций.

Изучение мутагенного действия промышленных ядов целесообразно проводить по схеме, рекомендованной И.В. Саноцким (схема 2).

Схема 2

Последовательность изучения мутагенного действия промышленных ядов

 

Исследование мутагенного эффекта следует начинать не со смертельных или близких к ним уровней воздействия, а с уровней порога однократного действия по интегральным показателям. При хроническом эксперименте для установления порога специфического действия применяют дозы и концентрации вещества, лежащие на уровне и ниже порога хронического действия.

При установлении мутагенного действия промышленных ядов должна проводиться коррекция ПДК, установленных по показателям общего токсического действия.

Основы токсикометрии

Оценки токсичности и опасности вредных веществ. Изучение любого вредного вещества предусматривает установление количественных показателей токсичности и опасности его, т. е. показателей токсикометрии.

Токсикометрия – это совокупность методов и приемов исследований для количественной оценки токсичности и опасности ядов.

Токсический эффект при действии разных доз и концентраций вредных веществ может проявиться в виде нарушений отдельных или многих функций или деятельности всего организма, вплоть до его гибели.

Наиболее статистически значимы в характеристике токсичности ядов по сметельному эффекту средняя смертельная концентрация у воздухе (CL50) и средняя смертельная доза (DL50) при введении в желудок или другими путями.

Средняя смертельная концентрация вредного вещества в воздухе - это концентрация вещества, вызывающая гибель 50% животных при двух-, четырехчасовом ингаляционном воздействии, средняя смертельная доза при введении в желудок - доза вещества, вызывающая гибель 50% животных при однократном введении в желудок.

Величины средних смертельных концентраций и доз, установленные непосредственно в эксперименте, рассматриваются как показатели абсолютной токсичности вредных веществ.

Токсичность ядов тем больше, чем меньше величины CL50 и DL50, т. е. токсичность равна 1/CL50 или 1/DL50.

В оценке промышленных ядов важным является не только установление верхних показателей токсичности, т. е. смертельных концентраций и доз, являющихся крайними формами воздействия вещества. Неменьшее значение имеет установление порога вредного действия (однократного и хронического), а также порога специфического действия.

Порога вредного действия (однократного и хронического) - это минимальная концентрация (доза) вещества в объекте окружающей среды, при воздействии которой в организме (при конкретных условиях поступления веществ и стандартной статистической группе животных) возникают изменения, выходящие за пределы физиологических приспособительных реакций или скрытая (временно компенсированная) патолология.

Порог однократного действия обозначается символом Limac, порог хронического действия – Limch.

Порог специфического (избирательного) действия – минимальная концентрация (доза), вызывающая изменение биологических функций отдельных органов и систем организма, которые выходят за пределы приспособительных физиологических реакций, обозначается символом Limsp.

Для установления порога однократного действия проводится серия острых опытов на лабораторных животных с применением разных доз и концентраций изучаемого вещества. При этом устанавливают ту минимальную концентрацию (дозу), при воздействии которой в организме опытной группы животных возникают изменения, выходящие за пределы физиологических приспособительных реакций или скрытая патология. Для этого обычно используют интегральные показатели интоксикаций - показатели, характеризующие изменение общего состояния организма, подвергнутого токсическому воздействию (например, масса тела, температура тела).

Установление порога хронического действия осуществляется в хронических опытах на животных (в течение 4 мес) при разных уровнях воздействия вредного вещества. Во время эксперимента проводится всестороннее изучение действия вещества на организм, выявление наиболее чувствительных к нему органов и систем, функциональных и морфологических изменений в них.

Если известны механизмы токсического действия вредного вещества, то устанавливают порог специфического действия. Для этого в эксперименте на лабораторных животных используют специфические показатели токсического действия вещества, например определение активности фермента холинэстеразы при действии фосфорорганических веществ.

Определение средних смертельных концентраций и доз, порогов вредного действия необходимо также для оценки опасности вредных веществ, установления возможности острых и хронических отравлений на производстве, определения безопасных концентраций расчетными методами.

Опасность вещества - это вероятность возникновения вредных для здоровья эффектов в реальных условиях производства или применения химических веществ.

Различают 2 группы количественных показателей опасности:

1) потенциальной вазможности поступления вредных веществ в организм (критерии потенциальной опасности).

2) компенсаторных свойств организма по отношению к данному яду (критерии реальной опасности).

К потенциальным показателям опасности относится, например коэффициент возможности ингаляционного отравления (КВИО) - отношение максимально достижимой концентрации вредного вещества в воздухе при 20 ºС (C 20 ) к средней смертельной концентрации вещества для мышей (при 2-часовой экспозиции и 2-недельном сроке наблюдения).

Анализ оценки опасности различных промышленных ядов по величине КВИО показывает, что в ряде случаев малотоксичное, но высоколетучее вещество в условиях производства может оказаться более опасным в развитии острого отравления, чем, высокотоксичное, но малолетучее соединение.

Так, например, ацетальдегид, обладая умеренной токсичностью (CL50 = 21800 мг/м3), является высоколетучим (С20 = 182*104 мг/м3) и по величине КВИО относится к высокоопасным веществам (КВИО = 82). В то же время бензальхлорид, являясь чрезвычайно токсичным (CL50 = 400 мг/м3), но имея низкую летучесть (С20 = 1100 мг/м3), оказывается веществом малоопасным (КВИО = 2,7). О реальной опасности развития острого отравления можно судить также по величине зоны острого действия.

Зона острого действия (Zас) - это отношение средней концентрации (дозы) к пороговой концентрации (дозе) при однократном воздействии. Она является интегральным показателем компенсаторных свойств организма, его способности к обезвреживанию и выведению яда из организма и компенсации поврежденных функций.

Величина Zас обратно пропорциональна опасности ядов при однократном воздействии, т. е. чем меньше её количественная характеристика, тем больше возможность развития острого отравления.

При сравнительной токсикологической оценке промышленных ядов нельзя исходить только из результатов острых экспериментов, так как при хроническом воздействии некоторых вредных веществ интоксикации имеют иной патогенез, нежели патогенез острой интоксикации. Часто промышленные яды, обладающие низкой токсичностью в остром опыте, при хроническом воздействии в малых концентрациях оказываются высокоопасными.

Классическими примерами таких ядов являются свинец, марганец, ртуть и другие тяжелые металлы; среди органических ядов - бензол, тринитротолуол и многие другие соединения.

Известно, что одним из ведущих факторов, обусловливающих развитие хронических отравлений, являются процессы кумуляции.

Различают материальную (накопление самого яда в организме) и функциональную (накопление эффекта при повторном воздействии вещества) кумуляцию.

Количественная оценка кумулятивных свойств вредных веществ в промышленной токсикологии осуществляется по величине коэффициента кумуляции.

Коэффициент кумуляции - отношение величины суммарной дозы яда, вызывающей определенный эффект (чаще смертельный) у 50% подопытных животных при многократном пробном введении, к величине дозы, вызывающей тот же эффект при однократном воздействии. Необходимо отметить, что этот коэффициент - величина, обратная интенсивности кумуляции: чем она меньше, тем кумуляция больше.

Степень кумулятивных свойств вредного вещества характеризует реальную опасность развития хронической интоксикации, и поэтому коэффициент кумуляции должен учитываться при гигиенической регламентации вредных веществ в воздухе рабочей зоны.

Другим показателем реальной опасности развития хронической интоксикации является величина зоны хронического действия и величина зоны биологического действия.

3она хронического действия (Zch) - отношение пороговой концентрации (дозы) при однократном воздействии к пороговой концентрации (дозе) при хроническом воздействии.

3она биологического действия (Zbef) – отношение средней смертельной кондентрации (дозы) к пороговой концентрации (дозе) при хроническом воздействии.

Величина зоны хронического действия используется для характеристики опасности яда при хроническом воздействии. Опасность хронического отравления прямо пропорциональна величине зоны хронического действия, т. е. чем зона хронического действия шире, тем больше опасность хронической интоксикации, и наоборот.

Таблица 13. Классификация вредных веществ по степени воздействия на организм.

Наименование показателя

Класс опасности

1-й

2-й

3-й

4-й

ПДК вредных веществ в воздухе рабочей зоны, мг/м3

Менее 0,1

0,1-1,0

1,0-10,0

Более 10,0

Средняя смертельная доза при введении в желудок, мг/кг

Менее 15

15-150

151-5000

Более 5000

Средняя смертельная доза при нанесении на кожу, мг/кг

Менее 100

100-500

501-2500

Более 2500

Средняя смертельная концентрация в воздухе, мг/м3

Менее 500

500-5000

5001-50000

Более 50000

Коэффициент возможности ингаляционного отравления (КВИО)

Менее 300

300-30

29-3

Менее 3

Зона острого действия

Менее 0,6

6,0-18,0

18,1-54,0

Более 54,0

Зона хронического действия

Менее 10,0

10,0-5,0

4,9-2,5

Менее 2,5

Зоны хронического и биологического действия отражают кумулятивные свойства вещества, кроме того, зона хронического действия является показателем компенсаторных свойств организма на низком пороговом уровне.

Согласно классификации (ГОСТ 2.1.007 - 76), по степени опасности возникновения отравления все промышленные яды подразделяются на 4 класса опасности: чрезвычайно опасные, высокоопасные, умеренно опасные и малоопасные. Класс опасности вредных веществ устанавливают в зависимости от величины показателей токсикометрии, указанных в табл. 13. При оценке опасности по ряду показателей для одного вещества можно получить разные классы, но определяющим в конечном итоге должен быть показатель, который выявляет наибольшую степень опасности.

Принципы установления предельно допустимых концентраций (ПДК) в воздухе рабочей зоны

При современном состоянии технологических процессов и средств борьбы с поступлением промышленных ядов в рабочую зону требование полного отсутствия их в зоне дыхания работающих часто является нереальным, а достижение подобного результата - очень трудная техническая задача, выполнение которой связано с неоправданно большими материальными затратами. В связи с этим особую значимость приобретает гигиеническая регламентация содержания вредных веществ в воздухе рабочей зоны.

Задачи гигиенического регламентирования промышленных ядов в воздухе рабочей зоны вытекают из принятого и загостированного определения ПДК: «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны - концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч или при другой продолжительности, но не более 41 ч в неделю, в течение всего рабочего стажа не могут вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений».

При установлении ПДК вредных веществ в воздухе рабочей зоны руководствуются следующими принципами.

1. Принцип опережения разработки и внедрения профилактических мероприятий по сравнению с моментом поступления вещества в широкую практику.

2. Принцип стадийности токсикологических исследований - синхронно со стадиями химической и технологической разработки производства нового продукта.

3. Принцип примата медицинских и биологических показаний к установлению санитарных регламентов перед прочими подходами (техническая достижимость, экономические требования).

4. Принцип пороговости всех типов действия химических соединений (в том числе мутагенного и канцерогенного).

5. Принцип постоянства численности вида, единства организма со средой обитания, единства организма как биологической системы (основа определения критериев вредности при разработке схем токсикометрии).

Гигиеническое нормирование вредных веществ в настоящее время проводится в 3 этапа: 1) обоснование ОБУВ (ориентировачно безопасного уровня воздействия); 2) обоснование ПДК; 3) корректирование ПДК путем сравнения условий труда работающих и их состояния здоровья.

1-й этап приурочивается к периоду лабороторной разработки новых соединений, 2-й - к периоду полузаводских испытаний, а 3-й этап выполняется после внедрения веществ в производство в сроки, установленные в зависимости от токсикологической характеристики вещества и гигиенической характеристики производства.

Разработке ПДК может предшествовать обоснование ОБУВ в воздухе рабочей зоны для изучаемого соединения.

Ориентировочно безопасный уровень воздействия – временный гигиенический ориентировочный норматив содержания вредных веществ в воздухе рабочей зоны. Обоснование ориентировочно безопасных уровней воздействия производится в соответствии с Методическими указаниями по установлению ориентировочных безопасных уровней вредных веществ в воздухе рабочей зоны, утвержденных МЗ СССР путем расчета по параметрам токсикометрии и физико-химическим свойствам на основе корреляционно-регрессионной зависимости или путем интерполяций и экстраполяций в рядах близких по строению соеинений.

ОБУВ должны пересматриваться через 2 года после их утверждения МЗ СССР или заменяться утвержденной в установленном порядке ПДК с учетом накопленных данных о соотношении здоровья работающих с условиями труда.

В отдельных случаях по согласованию с органами Государственного санитарного надзора допускается при проектировании производства использование ОБУВ величиной более 1 мг/м3 в воздухе рабочей зоны (умеренно и малоопасные вещества). В остальных случаях ОБУВ не должны применяться при проектировании производства.

Обоснование величины ПДК вредных веществ в воздухе рабочей зоны основывается на показателях токсикометрии, установленных в экспериментах на животных. Исходной величиной для установления ПДК является порог хронического действия (Limch), в который вводится так называемый коэффициент безопасности (Is) или коэффициент запаса (К3), что можно выразить в виде формулы:

ПДК = Limch/Кз

При определении коэффициента запаса надлежит исходить из следующих положений. Коэффициент запаса увеличивается с увеличением абсолютной токсичности и КВИО, с уменьшением зоны острого действия и увеличением кумулятивных свойств (уменьшение коэффициента кумуляции, увеличение зоны хронического и биологического действия), при значительных различиях в видовой чувствительности подопытных животных, выраженном кожно-резорбтивном действии (для веществ, находящихся в газовой фазе).

Решение в каждом конкретном случае зависит от особенностей действия яда.

Если верхние параметры токсичности не установлены, для определения ПДК можно воспользоваться формулой К. К. Сидорова:

ПДК = Limch/К1*К2*К3

где К1 - поправочный коэффициент, учитывающий кумулятивные свойства яда и пропорциональный величине зоны его биологического действия (берется по таблице); К2 - поправочный коэффициент, учитывающий вариабельность видовой чувствительности к яду (также по таблице); К3 - поправочный коэффициент, учитывающий специфическое действие вещества (как правило, не менее 10).

Объективизация выбора коэффициента запаса, обоснованная К. К. Сидоровым, состоит в использовании не одного Limch, a целого комплекса количественных показателей потенциальной и реальной опасности производственного яда, выраженных в баллах.

Обоснованные указанными способами ПДК утверждаются МЗ СССР и публикуются в виде списков, имеющих законодательную силу. На 1986 г. было опубликовано 27 списков в дополнение к ранее опубликованным официальным документам.

Величина ПДК может быть пересмотрена на следующем этапе гигиенического нормирования химических веществ – при корректировке ПДК путем сравнения условий труда работающих и состоянии их здоровья или по мере накопления новых сведений о токсикологической характеристика данного соединения или близких к нему веществ.

ПДК химических веществ в воздухе рабочей зоны до последнего времени рассматривались как максимальные. Превышение их даже в течение короткого времени запрещалось, а контроль осуществлялся определением концентрации яда. В последние годы проведенные экспериментальные исследования и клинико-гигиенические наблюдения позволили ввести для ядов, обладающих кумулятивными свойствами (медь, ртуть, свинец и его неорганические соединения, пыль металлической сурьмы и окись кадмия и др.), вторую величину для контроля норматива – по среднесменной концентрации. Это концентрация, полученная при непрерывном или периодическом отборе проб воздуха в течение смены, но не менее 75% ее продолжительности.

При отсутствии постоянных рабочих мест среднесменная концентрация определяется как средневзвешенная величина, вычисленная по концентрациям, определенным на основных стадиях технологического процесса с учетом времени пребывания работающих в этих условиях.

Среднесменная концентрация рассчитывается по формуле:

где Ксс - среднесменная концентрация; К1, К2...Кn - среднеарифметическая величина концентраций химического вещества на отдельных стадиях технологического процесса; t1, t2...tn - продолжительность пребывания рабочих на соответствующих рабочих местах.

Среднесменные концентрации могут служить для оценки состояния здоровья работающих, расчета поглощенной дозы, установления экспозиционных тестов, т. е. определения уровня токсического соединения и его метаболитов в биологической среде человека (кровь, моча, волосы и др.).

Наряду с установлением ПДК вредных веществ в воздухе рабочей зоны проводятся также работы по обоснованию биологических предельно допустимых концентраций. Основная задача при этом сводится к установлению «критической границы», т. е. определению того количества яда, которое циркулирует в организме, но не вызывает еще интоксикации.

При установлении ПДК обязательно проводятся исследования воздействия вредных веществ на кожные покровы. Для веществ, обладающих кожно-резорбтивным действием, обосновывается предельно допустимый уровень загрязнения кожи (мг/см2). Исследования при этом проводятся в соответствии с методическими указаниями «Оценка воздействия вредных химических соединений на кожные покровы и обоснование предельно допустимых уровней загрязнений кожи», утвержденными МЗ СССР.

ПДК вредных веществ в воздухе рабочей зоны используются при проектировании производственных зданий, технологических процессов, оборудования и вентиляции, а также для предупредительного и текущего санитарного надзора (оценка эффективности оздоровительных мероприятий).

Гигиеническая стандартизация химического сырья и готовых продуктов

Используемое в технологическом процессе химических предприятий сырье и готовые продукты могут содержать токсические примеси, которые при поддержании концентраций основных веществ на уровне ПДК могут усугублять их токсическое действие или вызывать его сами. В связи с этим нужна соответствующая регламентация рецептур и технологических процессов. Такое направление гигиенической регламентации допустимых количеств примесей путем внесения выработанных ограничений в Государственные стандарты, временные или постоянные технические условия и организация контроля за их содержанием в воздухе и контролируемом продукте.

Одним из наиболее распространенных и известных продуктов, которые могут содержать высокоядовитые примеси, являются органические растворители. Обычно эти смеси непостоянного состава, в которых количества наиболее опасных составных ингредиентов или особо опасных загрязняющих примесей могут колебаться в значительных пределах. Например, в бензинах содержание ароматических углеводородов в зависимости от месторождения нефти, способа получения и марки конечного продукта колеблется от 3 до 40 - 50%. Высокомолекулярные синтетические материалы содержат остатки токсических мономеров (из-за неполной полимеризации или конденсации), а также другие летучие примеси многих добавляемых ингредиентов (пластификаторов, антиоксидантов и прочих «добавок»).

В основу гигиенической стандартизации могут быть положены результаты экспериментальных токсикологических исследований новых химических веществ, их смесей, готовых продуктов. Должны учитываться также условия их получения и применения (нагревание, механическая обработка, степень контакта и др.), натурные условия, концентрация в воздухе рабочей зоны, влияние в зависимости от рецептуры или содержания опасных примесей.

Государственные стандарты и технические условия в соответствующих разделах согласуются с МЗ, центральными комитетами профсоюзов. В свою очередь в положении о государственном санитарном надзоре указывается, что МЗ должно рассматривать проекты Государственных стандартов и технические условия на новые виды сырья, давать разрешения на применение новых химических веществ, новых промышленных изделий, пластмасс и др. При этом особое внимание должно быть обращено на производство и хранение радиоактивных, сильнодействующих, ядовитых веществ и средств защиты растений.