Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект_2xxx.doc
Скачиваний:
2
Добавлен:
12.09.2019
Размер:
3.27 Mб
Скачать

Синхронные rs-триггеры.

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как в начальный момент времени может возникать переходный процесс (в цифровых схемах этот процесс называется опасные гонки), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены.

Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала). Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Для того чтобы отличать от них рассмотренные ранее варианты (RS-триггер и триггер Шмитта) эти триггеры получили название асинхронных.

Формировать синхронизирующие сигналы с различной частотой и скважностью при помощи генераторов и одновибраторов мы уже научились в предыдущих главах. Теперь научимся записывать в триггеры входные логические сигналы только при наличии разрешающего сигнала.

Для этого нам потребуется схема, пропускающая входные сигналы только при наличии синхронизирующего сигнала. Такую схему мы уже использовали при построении схем мультиплексоров и демультиплексоров. Это логический элемент “И”. Триггеры, записывающие сигналы только при наличии синхронизирующего сигнала называются синхронными. Принципиальная схема синхронного RS-триггера приведена на рисунке 5.

Для таких цифровых схем требуются синхронные триггеры. Схема синхронного триггера приведена на рисунке 4, а обозначение на принципиальных схемах на рисунке 5.

Рисунок 5. Схема синхронного RS-триггера, построенного на элементах "И".

В таблице 2 приведена таблица истинности синхронного RS-триггера. В этой таблице символ x означает, что значения логических уровней на данном входе не важны. Они не влияют на работу триггера.

Таблица 2. Таблица истинности синхронного RS-триггера.

С

R

S

Q(t)

Q(t+1)

Пояснения

0

x

x

0

0

Режим хранения информации

0

x

x

1

1

1

0

0

0

0

Режим хранения информации

1

0

0

1

1

1

0

1

0

1

Режим установки единицы S=1

1

0

1

1

1

1

1

0

0

0

Режим записи нуля R=1

1

1

0

1

0

1

1

1

0

*

R=S=1 запрещенная комбинация

1

1

1

1

*

Как мы уже показали в предыдущей главе, RS-триггеры могут быть реализованы на различных элементах. При этом логика их работы не изменяется.

ПЛИС

Программируемые логические интегральные схемы – ПЛИС являются одними из самых перспективных элементов цифровой схемотехники. ПЛИС представляет собой кристалл, на котором расположено большое количество простых логических элементов. Изначально эти элементы не соединены между собой. Соединение элементов (превращение разрозненных элементов в электрическую схему) осуществляется с помощью электронных ключей, расположенных в этом же кристалле. Электронные ключи управляются специальной памятью, в ячейки которой заносится код конфигурации цифровой схемы. Таким образом, записав в память ПЛИС определенные коды, можно собрать цифровое устройство любой степени сложности (это зависит от количества элементов на кристалле и параметров ПЛИС). В отличие от микропроцессоров, в ПЛИС можно организовать алгоритмы цифровой обработки на аппаратном (схемном) уровне. При этом быстродействие цифровой обработки резко возрастает.

Отличительными системными особенностями являются:

  • внутренние буфера с возможностью переключения в высокоомное состояние и тем самым позволяющие организовать системные двунаправленные шины

  • индивидуальный контроль высокоомного состояния и времени нарастания фронта выходного сигнала по каждому внешнему выводу

  • наличие общего сброса/установки всех триггеров ПЛИС

  • множество глобальных линий с низкими задержками распространения сигнала

  • наличие внутреннего распределённого ОЗУ Xilinx, реализующегося посредством тех же LUT – таблиц (серии Spartan, Virtex, XC4000).

  • наличие внутреннего блочного ОЗУ, один блок имеет ёмкость 4 кбит (семейства Virtex, Virtex-E, Spartan-II, Spartan-IIE) или 18 кбит (семейства Virtex-II и Virtex-IIPro), всего блоков до 556 на кристалл

  • наличие встроенных блоков умножителей 18х18 (семейства Virtex-II и Virtex-IIPro), всего блоков до 556 на кристалл

  • наличие встроенных блоков процессоров PowerPC-405 (семейство Virtex-IIPro), до 4 процессоров на кристалл

  • наличие высокоскоростных трансиверов(семейство Virtex-IIPro), до 24 со скоростью передачи данных 3.125 ГБит/с каждый Достоинствами технологии проектирования устройств на основе ПЛИС являются:

  • минимальное время разработки схемы (нужно лишь занести в память ПЛИС конфигурационный код);

  • в отличие от обычных элементов цифровой схемотехники здесь отпадает необходимость в разработке и изготовлении сложных печатных плат;

  • быстрое преобразование одной конфигурации цифровой схемы в другую (замена кода конфигурации схемы в памяти);

  • для создания устройств на основе ПЛИС не требуется сложное технологическое производство. ПЛИС конфигурируется с помощью персонального компьютера на столе разработчика. Потому иногда эту технологию называют «фабрикой на столе». Типичные области применения ПЛИС: цифровая обработка сигналов, пользовательская электроника, системы сбора данных, системы управления, телекоммуникационное оборудование, оборудование для систем беспроводной связи, компьютерное оборудование общего назначения.

D-триггеры.

В RS-триггерах для записи логического нуля и логической единицы требуются разные входы, что не всегда удобно. При записи и хранении данных один бит может принимать значение, как нуля, так и единицы. Для его передачи достаточно одного провода. Как мы уже видели ранее, сигналы установки и сброса триггера не могут появляться одновременно, поэтому можно объединить эти входы при помощи инвертора, как показано на рисунке 7.

Рисунок 7. Схема D-триггера (защелки)

Такой триггер получил название D-триггер. Название происходит от английского слова delay - задержка. Конкретное значение задержки определяется частотой следования импульсов синхронизации. Условно-графическое обозначение D-триггера на принципиальных схемах приведено на рисунке 8.

Рисунок 8. Условно-графическое обозначение D-триггера (защелки)

Таблица истинности D-триггера достаточно проста, она приведена в таблице 3. Как видно из этой таблицы, этот триггер способен запоминать по синхросигналу и хранить один бит информации.

Таблица 3. Таблица истинности D-триггера

С

D

Q(t)

Q(t+1)

Пояснения

0

x

0

0

Режим хранения информации

0

x

1

1

1

0

x

0

Режим записи информации

1

1

x

1

Нужно отметить, что отдельный инвертор при реализации триггера на ТТЛ элементах не нужен, так как самый распространённый элемент ТТЛ логики - это “2И-НЕ”. Принципиальная схема D-триггера на элементах 2И-НЕ” приведена на рисунке 9.

Рисунок 9. Схема D-триггера, реализованная на ТТЛ элементах

Во всех рассмотренных ранее схемах синхронных триггеров синхросигнал работает по уровню

По этой временной диаграмме видно, что триггер-защелка хранит данные на выходе только при нулевом уровне на входе синхронизации. Если же на вход синхронизации подать активный высокий уровень, то напряжение на выходе триггера будет повторять напряжение, подаваемое на вход этого триггера.

Входное напряжение запоминается только в момент изменения уровня напряжения на входе синхронизации C с высокого уровня на низкий уровень. Входные данные как бы "защелкиваются" в этот момент, отсюда и название – триггер-защелка.

Принципиально в этой схеме входной переходной процесс может беспрепятственно проходить на выход триггера. Поэтому там, где это важно, необходимо сокращать длительность импульса синхронизации до минимума. Чтобы преодолеть такое ограничение были разработаны триггеры, работающие по фронту.

D-триггеры, работающие по фронту.

Фронт сигнала синхронизации, в отличие от высокого (или низкого) потенциала, не может длиться продолжительное время. В идеале длительность фронта равна нулю. Поэтому в триггере, запоминающем входную информацию по фронту не нужно предъявлять требования к длительности тактового сигнала.

Триггер, запоминающий входную информацию по фронту, может быть построен из двух триггеров, работающих по потенциалу. Сигнал синхронизации будем подавать на эти триггеры в противофазе. Схема такого триггера приведена на рисунке 12.

Рисунок 12. Схема D-триггера, работающего по фронту

Рассмотрим работу схемы триггера, приведенной на рисунке 12 подробнее. Для этого воспользуемся временными диаграммами, показанными на рисунке 13. На этих временных диаграммах обозначение Q΄ соответствует сигналу на выходе первого триггера. Так как на вход синхронизации второго триггера тактовый сигнал поступает через инвертор, то когда первый триггер находится в режиме хранения, второй триггер пропускает сигнал на выход схемы. И наоборот, когда первый триггер пропускает сигнал с входа схемы на свой выход, второй триггер находится  в режиме хранения.

Рисунок 13. Временные диаграммы D-триггера.

Обратите внимание, что сигнал на выходе всей схемы в целом не зависит от сигнала на входе "D" схемы. Если первый триггер пропускает сигнал данных со своего входа на выход, то второй триггер в это время находится в режиме хранения и поддерживает на выходе предыдущее значение сигнала, то есть сигнал на выходе схемы тоже не может измениться.

В результате проведённого анализа временных диаграмм мы определили, что сигнал в схеме, приведенной на рисунке 12 запоминается только в момент изменения сигнала на синхронизирующем входе "C" с единичного потенциала на нулевой.

Динамические D-триггеры выпускаются в виде готовых микросхем или входят в виде готовых блоков в составе больших интегральных схем, таких как базовый матричный кристалл (БМК) или программируемых логических интегральных схем (ПЛИС).