Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
24-31.doc
Скачиваний:
7
Добавлен:
11.09.2019
Размер:
398.34 Кб
Скачать

4. Непрерывность функции в точке. Свойства функций непрерывных на отрезке.

О1. aЄD(f).Функция f с областью определения D(f) наз. непрерывной в точке a, если выпол-ся рав-во limf(x)=f(a) при x→a. Если это рав-во нарушено, то а-т.разрыва ф-и f. Ф-я f, непр-я в каждой т.мн-ва Е наз-ся непр-й на мн-ве Е.

Из ариф-х св-в предела фун-и в точке автоматически получ-ся след-я т-ма.

Т1. Если функции: f и g нпр в точке а, аЄD(f)∩D(g). то в этой точке нпр и функции f±g, f·g, а при g(a)≠0 и функция f/g.

О2. Функция f наз. непрерывной на мн-ве Е, если она непрерывна в каждой точке из мн-ва Е //заметим, что при этом необходимо выполнятся ЕcD(f)//.

Т2.(Больцано – Коши) Если функция f определена и нпр на отрезке [а, b] и на его концах принимает значения разных знаков

, тогда

Док-во:(Методом деления отр.пополам) Разделим отрезок (а, в) пополам точкой (а+в)/2. Случ-но м\т оказ-ся, что в этой точке функция обратится в 0, тогда обозначим с=(а+в)/2 и доказательство закончено. Поэтому будем считать, что значение в этой точке f≠0. Обозначим через ту половину, на концах кот. Знаки ф-и различны. Для этого отрезка мы имеем: f(a1)f(b1)<0. и b1-a1=(b-a)/2

На след. шаге разобьём пополам [а1,b1] Если в т. деления ф-я обращ-ся в 0, то обозначим ее буквой с и закончим док-во. Если это не так, обозначим через [а2, b2] ту половину [a1,b1], на концах которой функция принимает значения разных знаков f(a2)f(b2)<0. и b2-a2=(b-a)/22

Продолжим этот процесс послед-го деления отр-в пополам и выбора той из половин, на концах кот. Значения ф-и имеют различ. знаки.

Возможны 2 варианта:

1. В какой – то из точек ф-я обратиться в 0.

2. На n –ом шаге мы получим:

[an,bn]c[an-1,bn-1], f(an)f(bn)<0 (1) и bn-an=(b-a)/2n

……………………………

При этом мы будем иметь: [a,b]c[a1,b1]с[a2,b2]c…с[an,bn]c…, т.е отрезки вложены друг в друга.

lim(bn-an)=lim((b-a)/2n)=0

Отрезки стяг-ся. Тогда по принципу Кантора стяг-ся отрезков: Ǝ!c=liman=limbn(2). Т.к. совершенно ясно, что ф-я f б/т нпр в т. с

Тогда из соот-й (2) мы получим:

limf(an)=f(c)

limf(bn)=f(c)

Из (1): limf(an)f(bn)≤0

f2(c)≤0f(c)=0. чтд.

Как следствие из т-мы 1 получается т-ма 2 о промежуточном значении.

Т.3. Пусть f нпр на отрезке [а,b] и на его концах принимает неодин-е значения

Тогда какого бы ни было число С, лежащее между А и В, найдется такая точка

Док-во: Пусть для определенности А<В. Вспомогательная функция h(x)=f(x)-C, очевидно, непрерывна на [a,b]. Т.к., кроме того h(a)=f(a)-C=A-C<0, h(b)=f(b)-C=B-C>0, то по Т.2. существует с€(a,b) со св-вом h(c)=0, т.е. f(c)-C=0 или f(c)=C.

О3:Ф-я f, опр-я на мн-ве Е наз-ся огр-й сверху (снизу) на мн-ве Е, если ƎМ: f(x)≤M(f(x)≥M) для люб. xЄE. Ф-я f наз-ся огр-й, если она огр-на и сверху и снизу.

1 сп. Сущ. m и M:

2 сп. Сущ. М:

Т.4.(1-я т-ма Вейер-са). Каждая непрерывная функция f на отрезке [а,b] ограничена на нем.

Теорема 5 (2-я т. Вейер-са). Если функция непрерывна на [а,b], то она принимает на нем свои наименьшее и наибольшее значение.

Крат. Запись: f нпр на [а,b]. Док-ть, что

Док-во: (Для наиб. Знач.)

Обозначим A= Suр Е (f). Этот Suр сущ-т т.к. по 1-й т-ме В-са мн-во значений ограниченно и по т-ме о гранях мы должны док-ть, что сущ. х0 из [a;b]:f(х0)=A. Д-во проведем от противного.

допустим,

Тогда введем вспомогательную функцию

g(x)=1/(A- f(x)), . Ф-я g(х) нпр как частное 2-х нпр, причем A- f(x)≠0═> по Т.4 ограничена на этом отрезке:

Пос-ку g(x) полож. g(x)≤M

Последнее неравенство означает, что число

A- 1/M мажоранта Е(f),но это невозможно, пос-ку число А будучи Sир Е (f) яв-ся самой маленькой из мажорант. Это противоречие доказывает теорему.

5. Опр-ие производ. ф-ии в точке. Ариф-ие св-ва произв-й. Геометр-ий смысл производной.

О 1.Пусть ф-ия f(x) опред.на неккот интервале, содерж-ий т.t, т.е. t - внутренняя точка D(f) Если существует конечный предел ,

, то он наз-ся производной ф-ии f в точке t и обозначается через f’(t). Ф-ия f называется дифференцируемой в точке t. Если произв-ая Ǝ в кажд.точке мн-ва Е, то ф-ия наз-ся диффер-ой на Е.

Т\о f’в точке t (f’(t))-число.

Если же ф-ия диффер-ма на мн-ве Е, то сопоставляя каждому числу хЄЕ произв-ю f’(х) мы получаем производную ф-ию f’(х),определенную на Е.

Лемма. Если ф-ия f дифференцируема в точке t, то она и непрерывна в этой точке t.

Док-во: Т.к. при х≠t еханике принято считать, что точки в момент материальной точки на это материальная точка движется прямолинейно по закону 0000 то по св-вам предела функции имеем

Геометрический смысл производной:

задана некот.кривая и на ней т.М0. Возьмем М и проведем секущую. Б\м двигать т.М по направ. К т.М0 по кривой. Секущая М0М поворачивается в т.М0.

Если при стремлении т.М к т.М0 вдоль кривой секущая занимает предельное положение М0T, то МТ наз-ся касательной.

⊔ теперь задана ф-ия f(x), про ктр известно, что Ǝ f’(t). Возьмем х≠t. M0(t, f(t)), M(x, f(x)). Обе лежат на кривой y=f(x)

Проведем секущую М0М и ⊔ обозначен ч\з αх – угол наклона М0М к оси ОХ. Заметим, что МС=f(x)-f(t). M0C=x-t.

Из треуг-ка М0МС мы получ.что tgαx=МС/М0С=(f(x)-f(t))/(x-t), де х→t.

Тогда ясно:

  1. М→М0 вдоль кривой у=f(x)

  2. М0М поворачивается в точке М

  3. αх меняется

По условию дано. Что Ǝ f’(t), значит Ǝ f’(t)=

С ущ-ие предела

Означает, что сам угол αх→k

Предельному положению, а именно к углу α, определенному α═arctgk

По вышесказанному это значит, что гафик ф-ии имеет в т.М0 касательную, наклоненную к оси ОХ под углом α, а потому имеющую угловой коэф-т k=tgα=f’(t).

Получили след.геом-ий смысл произв.: производная ф-ии f в точке t равна тангенсу угла наклона касательной L к графику функции f в точке M0 с координатами (t, f(t)):

Т.1. Пусть функции f и g дифференцируемы в точке t и пусть t – внутренняя точка мн-ва D(f)∩D(g). Тогда в точке t дифференцируемы ф-ии f+g, f-g, f*g, а при g(t)≠0 и ф-ия f/g. При этом выполняются следующие равенства: Док-ва во всех 4 случаях сходны. Остановимся подробнее на примере ф-ии f*g. Док-во: Чтобы док-ть существование (f*g)(t) и вычислить ее заметим, что. .

D(fg)=D(f)∩D(g)

X0- внутренняя точка D(f)=> δ1 – окрестность точки х0:

t – внутренняя точка D(g)=> δ2 – окрестность точки t:

Рассмотрим δ=min{δ1; δ2}

(t- δ;t+ δ)c(t-δ1;t+ δ)cD(f)|

(t- δ;t+ δ)c(t- δ;t+ δ)cD(g)| =>(t- δ;t+ δ)cD(f)∩D(g)

Представим выражение под знаком предела в удобной форме:

Т.к. при х→t, в силу лемме, g(x)→g(t), а из дифференцируемости ф-ий f и g в точке t, следует , то по Т.( Если существуют конечные пределы ф-ий f и g в точке t, причем t – точка прикосновения мн-ва D(f)∩D(g), то в ней существуют пределы функций f+g, f-g, f*g) существует предел выражения (2), причем он равен именно правой части доказываемой формулы 3.

//Для док-ва 4.:

По условию по Лемме: y=g(x) непрерывна в точке t т.е.

Рассмотрим g(t)>0=> по Т. о локальном сохранении знака(если предел в точке >0, то существует окрестность этой точки, во всех точках которой знак тоже положительный)=>

δ=min{δ123}

(t-δ;t+δ)c(D(f)∩D(g))\{x:g(x)=0}//

Т.2. Пусть функция f дифференцирована в т.x0, причем f(x0)≠0. Пусть Т=f(x0) и на некотором интервале, содержащем Т определена обратная функция F(х), непрерывная в т. Т. Тогда эта функция дифференцирована в т. Т, причем F'(Т)=1/f(x0).

Т.3. Пусть функция f дифференцирована в т. x0 и пусть в некотором интервале, содержащем т. x0 определена следующая функция

S(x)=g◦f(x)=g(f(х)). Обозначим Т=f(x0). Если внешняя функция g дифференцирована в т.Т, то сложная функция S(х) дифференцирована в т. x0, причем S(x0)=g(T)*f(x0)=

=g(f(x0))*f(x0), т.е. производная композиции равна произведению производных, составляющих эту функцию.

6. Диф-сть ф-и и ее диф-л.Геом-кий смысл диф-ла ф-и в точке.

y=f(x). t – внутренняя точка ее обл.опр. Если взять х≠t, хЄD(f), то мы обозн.ᇫx=x-t и б\м наз-ть приращением аргумента, а ᇫy=f(x)-f(t) б\м наз-ть приращением ф-и. Заметим, если Ǝ

О1. Если Ǝ такая постоянная А=const, что вып-ся ᇫy=Aᇫx+αᇫx (1), где α→0 приᇫx→0, то говорят, что ф-я y=f(x), диф-ма в т.t.

Само же выр-е Аᇫx наз-ся диф-лом ф-и в т.t и обозн.dy или df(t).

Мы выясним связь м\у диффер-тью ф-и в т.t и сущ-ем произв-й ф-и в этой т.

Теорема 1. Для того, чтобы ф-я y=f(x) была диф-ма в т.t необх-мо и дост-но, чтобы в этой т. Ǝ произв-я y’=f’(t), причем при вып-ии этого условия рав-во (1) имеет место титтк А= y’=f’(t)

Док-во: 1.Необх-ть.

⊔ ф-я диф-ма в т.t, то есть вып-но рав-во (1). Считая, чтоᇫx≠0 разделим обе части рав-а (1) наᇫx: ᇫy/ᇫx=А+α. Устремимᇫx→0, тогда

f’(t)=А+0=>A=f’(t)

2.Дост-ть.

Ǝ f’(t), тогда

Поскольку разность м\у ф-ей и ее пределом яв-ся беск-но малой мы м\м написать ᇫy/ᇫx=f’(t)+α, где α→0 приᇫx→0.

Умн-м части последнего рав-ва на ᇫx≠0: ᇫy=f’(t) ᇫx+αᇫx.

Мы получили рав-во (1), в ктр.А=f’(t). Читд.

ОЗ. Дифференциалом независимой переменной наз. произвольное приращение независимой переменной (аргумента) d(х)= Δх.

О4. Дифференциалом функции f(х) наз. произведение ее производной на дифференциал аргумента dу = df(x)=f(х)d(х). Дифференциал аргумента совпадает с приращением аргумента, а дифференциал функции в общем случае не совпадает с ее приращением.

Пример: y=x => y’=1 => dy=1*∆x=∆x

Геом.смысл дифференциала функции. Функция предполагается дифференцированной в т. х0 d(x)=Δх=МС Δf(x)=AC f(x)=tg∟BMC

Но df(x)=f(x)∆х=MC*tg∟BMC=BC

Д ифференциал функции изображается BC≠AC, изображающий приращение функции, т.е. если ∆f(x) – приращение ординаты кривой y=f(x), то df(x) – это приращение ординаты касательной к кривой в точке A. Это и есть геометрический смысл дифференциала.

Т.к.dy=y’dx, то умножая функции таблицы производных на dx мы получим таблицы дифференциалов.

Т.2. Если функции f и g дифференцированы в точке x0, то в этой точке дифференцированы функции f±g,f·g,f/g при g(x0)≠0, c·f при c –const, причем выполняются равенства:

1.d(f±g)=df±dg;

2. d(f·g)=gdf+fdg;

3. d(f/g)=(gdf-fdg)/g2;

4. d(cf)=cdf, при c-const.

Док-во(3): f дифференцирована в точке х0 => существует f’(x0)

g дифференцирована в точке х0 => существует g’(x0), т.о.существует (f/g)’(x0), g(x0)≠0 (f/g)’=(f’g-fg’)/g2

Теперь xdx

(остальные аналогично).