Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Харламов Механика ответы.docx
Скачиваний:
7
Добавлен:
02.09.2019
Размер:
7.07 Mб
Скачать

3. Жидкости и газы. Ньютоновская и неньютоновская жидкости. Закон реологической связи напряжений и скоростей деформаций.

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Газ — агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

Нью́тоновская жи́дкость (названная так в честь Исаака Ньютона) — вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость.

Если жидкость несжимаема и вязкость — константа по всему объёму жидкости, то уравнением, выражающим касательное напряжение в прямоугольной системе координат, будет:

(Закон Ньютона для вязкой жидкости)

Неньютоновской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости. Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.

Примером жидкостей с начальным напряжением сдвига является вязкопластичная жидкость, или жидкость Бингама–Шведова. Ее реологическое уравнение имеет вид:

4. Понятие о физических свойствах сплошных сред. Изотропия и анизотропия.

Физические свойства вещества — свойства, присущие веществу вне химического взаимодействия. Изучаемыми в рамках механики сплошной среды являются следующие физ. свойства:

Температура - скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

Вязкость - (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения.

Плотность - скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму. Плотность находится по формуле:

Теплопроводность - это перенос тепловой энергии структурными частицами вещества (молекулами, атомами, ионами) в процессе их теплового движения. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям.

Концентрация - физическая величина, равная отношению числа частиц N к объему V, в котором они находятся:

Текучесть — свойство пластичных металлов и тел при постепенном увеличении давления уступать действию сдвигающих сил и течь подобно вязким жидкостям. Текучесть является свойством, обратным вязкости.

Изотропи́я, изотро́пность (из др.-греч. ί̓σος «равный, одинаковый, подобный» + τρόπος «оборот, поворот; характер») — одинаковость физических свойств во всех направлениях, инвариантность, симметрия по отношению к выбору направления (в противоположность анизотропии).Изотропная среда — такая область пространства, физические свойства (электрические, оптические...) которой не зависят от направления.

Анизотропи́я (от др.-греч. ἄνισος — неравный и τρόπος — направление) — неодинаковость свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др.) по различным направлениям внутри этой среды; в противоположность изотропии. В отношении одних свойств среда может быть изотропна, а в отношении других — анизотропна; степень анизотропии также может различаться. Анизотропия свойственна жидким кристаллам, движущимся жидкостям (неньютоновским — особенно).

5. Диссипация энергии в вязкой жидкости.

6. Понятие о физическом подобии.

Понятие о физическом подобии явлений, протекающих в природе и в технических устройствах, играет в современных научных исследованиях и проектных разработках весьма значительную роль. В области аэродинамики, теплообмена и массообмена соображения, основанные на представлениях о физическом подобии привели к установлению ряда безразмерных комплексов, применение которых стало необходимым как при постановке эксперимента и его обобщении, так и при аналитических исследованиях.

Две и более физические системы называются подо́бными, если при их эволюции сохраняется отношение между некоторыми измеряемыми величинами, характеризующими данные системы. Другое определение: «Два явления подобны, если по заданным характеристикам одного можно получить характеристики другого простым пересчетом, который аналогичен переходу от одной системы единиц измерения к другой системе единиц измерения».

Для подобных систем можно найти так называемые критерии подобия — безразмерные величины, имеющие одинаковое значение для всех систем.

Таким образом, при соблюдении подобия экспериментальное исследование какого-либо физического явления может быть заменено исследованием его модели, что в ряде случаев является весьма целесообразным или даже единственно возможным.

Хорошим примером использования критерия подобия является моделирование экспериментов течения различных жидкостей, с различными скоростями и геометрическими параметрами канала с учетом числа Рейнольдса . Моделируя течения в лабораторных условиях на малых диаметрах канала, мы может подобрать такие скорости и вязкости потока, что течение будет подобно течению в больших диаметрах канала (например, в магистральных газопроводах), так как числа Рейнольдса различных течений мы подберем так, что они будут равны.