Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Акустика+залов+издательство.DOC
Скачиваний:
43
Добавлен:
30.08.2019
Размер:
1.62 Mб
Скачать

Линейные размеры зала принимаются приблизительно следующими: высота – 3х; ширина – 5х; длина – 8х. Оптимальная форма зала в плане

Форма залов зависит от их назначения, однако существуют общие требования, соблюдение которых позволяет достичь хорошей акустики залов:

расстояние между источником звука и слушателем должно быть минимальным;

форма плана должна учитывать направленность источника звука, что особенно важно при проектировании аудиторий и конференц-залов. Угол между лучами, направленными от источника к крайним рядам партера, должен быть минимальным;

форма отражающих поверхностей вблизи источника звука должна обеспечивать максимально возможную передачу звуковой энергии на последние ряды;

радиус кривизны вогнутых или сводчатых поверхностей с малым звукопоглощением должен превышать расстояние от источника до вогнутой поверхности не менее чем в 2 раза, что позволит избежать очагов концентрации звука;

в залах большой вместимости следует избегать параллельности стен, а также параллельности пола и потолка для предотвращения проявления интерференции отраженных звуковых волн (возникновения стоячих волн), приводящей к неравномерному распределению звука. Отклонение от параллельности боковых стен на 2–3 позволяет исключить такие нежелательные явления, как «порхающее эхо» и концентрация звука.

Форма зала в плане, отвечающая изложенным требованиям, изображена на рис. 1.

Рис. 1. Наиболее рациональная форма зала в плане

Если последние ряды удалены от источника звука более чем на 30 м, устраивают балкон.

Профиль пола

Пол партера и балкона должен иметь профиль, обеспечивающий хорошую видимость эстрады или сцены, что уменьшает поглощение прямого звука при распространении его от источника над слушателями (рис. 2). Целесообразно предусмотреть подъем пола зала, составляющий приблизительно 12 см на ряд. Ряды, расположенные на расстоянии менее 9–10 м от источника звука, не требуют подъема. Пол балкона может проектироваться с несколько большим подъемом .

Высота эстрады или авансцены должна быть не менее 1 м.

При проектировании размещения зрительских мест и профиля пола рекомендуется воспользоваться следующими данными: ширина зрительского места – 0,5–0,65 м, расстояние между рядами (между спинками кресел) в коротких рядах, состоящих из 12 мест с одним выходом или 24 мест с двумя выходами, – 0,85–0,9 м; в длинных рядах, состоящих из 26 мест с одним выходом или 50 мест с двумя выходами, – 1,0 м, расстояние от авансцены или от оркестровой ямы до первого ряда – 1,0 м.

Рис. 2. Профиль пола, обеспечивающий каждое

зрительское место прямым звуком

На рис. 3 показан схематический разрез оркестровой ямы в театральном зале.

Рис. 3. Разрез оркестровой ямы

Правильное распределение отраженного звука

Ранние интенсивные звуковые отражения (главным образом, первые) дополняют прямой звук источника, улучшая слышимость. Если расстояние от источника до точки приема превышает 8 м, следует обеспечить, кроме прямого звука, приход в эту точку малозапаздывающих первых отражений от боковых поверхностей и потолка.

Время запаздывания отраженного звука по отношению к прямому звуку не должно превышать оптимальных значений, в противном случае отражение создает эхо. Для хорошей разборчивости речи требуется меньшее запаздывание первого отражения по сравнению с приходом прямого звука, для восприятия музыки – несколько большее. Желательно, чтобы время запаздывания первых отражений не превышало 20–30 мс. Так как скорость звука в воздухе составляет приблизительно 340 м/с, то запаздыванию на 20 мс соответствует разность длин пути отраженного и прямого звука приблизительно 7 м, на 30 мс – 10 м. Время запаздывания отражений характеризует звучание и зависит от характера воспринимаемого звука (табл. 2)

При проектировании зала необходимо при помощи геометрических построений контролировать распределение и запаздывание звуковых отражений от потолка и стен зала согласно приведенным далее рекомендациям.

Расчет геометрических отражений является основным способом контроля правильности выбора формы зала и очертания его внутренних поверхностей, направляющих отраженный звук к слушателям, и необходим для оценки опасности возникновения концентрации звука. Расчет включает:

проверку допустимости применения геометрических отражений и их построение;

определение времени запаздывания;

определение уровня отражений по отношению к прямому звуку.

При расчете геометрических (лучевых) отражений распространяющаяся звуковая волна заменяется лучом соответствующего направления, подчиняющимся законам геометрической оптики, которые сводятся к следующему:

лучи, падающий и отраженный, а также нормаль в точке падения к элементу поверхности лежат в одной плоскости (лучевая плоскость);

угол падения равен углу отражения.

Структура первых звуковых отражений оценивается по лучевому эскизу зала. Обычно строят геометрические отражения в вертикальной плоскости по оси симметрии зала, в горизонтальной – на отметке источника звука. На рис. 4 приведен пример построения лучевого эскиза. Высота источника над полом эстрады или сцены принимается равной 1,5 м, а высота точки приема над полом –1,2 м (уровень уха сидящего зрителя).

Допустимость построения геометрических (лучевых) отражений зависит от длины звуковой волны, размеров отражающих поверхностей и их расположения по отношению к источнику звука и точке приема. Отражающая поверхность должна иметь массу не менее 20 кг/м2, ее коэффициент звукопоглощения для рассматриваемых частот не должен превышать 0,1. Линейные размеры отражающей поверхности должны превышать длину звуковой волны не менее чем в 1,5 раза. В случае криволинейной отражающей поверхности наименьший радиус кривизны должен превышать длину звуковой волны не менее чем в 2 раза.

Отражающие поверхности следует проектировать таким образом, чтобы приведенные условия выполнялись, по крайней мере, для частот 300–400 Гц, которые важны для разборчивости речи. Если условия применимости геометрических отражений выполнены для центральной точки отражающей поверхности, то их построение допустимо и для любой точки, отстоящей от краев не менее чем на половину длины звуковой волны. Поскольку частотам 300–400 Гц соответствует длина звуковой волны   1 м, то точки для проверки геометрических отражений должны выбираться на расстоянии не менее 0,5 м от краев отражающей поверхности, а размеры отражателя должны превышать 1,5 м.

Рис. 4. Построение лучевого эскиза:

а – продольный разрез зала; б – план зала; Q – источник звука;

M – точка приема; ON – нормаль к отражающей поверхности

При построении геометрических отражений используют метод мнимого источника Q, который симметричен действительному точечному источнику Q по отношению к отражающей плоскости (рис. 5, а). Для построения мнимого источника из точки Q опускают перпендикуляр на отражающую плоскость и на его продолжении откладывают отрезок QA, равный отрезку QA. Прямые, проведенные из мнимого источника Q, после пересечения ими отражающей плоскости являются отраженными лучами от действительного источника Q.

Метод мнимого источника может использоваться и при построении отражений от криволинейных поверхностей. В этом случае в качестве отражающей рассматривается плоскость, касательная к отражающей поверхности в точке О (см. рис. 5, б). В случае криволинейной поверхности каждой рассматриваемой точке соответствует свой мнимый источник.

Рис. 5. Построение геометрических отражений с помощью мнимого источника:

а – отражение от плоскости; б – отражение от криволинейной поверхности

При проектировании очертаний внутренних поверхностей зала и построении лучевого эскиза целесообразно определять ослабление первого отражения по отношению к прямому звуку.

Уровень прямого звука , дБ, в рассматриваемой точке определяется по формуле

, (3)

где – уровень звуковой мощности источника, дБ; – расстояние от источника до точки приема, м. Ориентировочные значения уровней звуковой мощности источников звука в залах различного назначения приведены в табл. 3.

Уровень однократно отраженного звука определяется по формуле

. (4)

Здесь – расстояние от источника до отражающей поверхности, м; – расстояние от отражающей поверхности до точки приема, м; – коэффициент звукопоглощения отражающей поверхности.

Если уровень звукового давления однократно отраженного звука не более чем на 3 дБ ниже прямого, то допустимое время запаздывания может быть увеличено в 1,5 раза. При ослаблении на 8–10 дБ первые отражения уже не формируют характер звучания. Они не рассматриваются как полезные и целесообразно обеспечить их поглощение. Если звуковое отражение приходит сзади, то время запаздывания уменьшается на 0,6 от допускаемого.

В качестве примера рассмотрим формирование отражений от потолка (см. рис. 4, а). Допустим, что расстояние, которое проходит прямой звук от источника Q до точки М, = 30 м. Путь, пройденный лучом первого отражения от источника Q до точки отражения O и от точки O до точки М, = 38 м. Разность хода отраженного и прямого звука = 38 – 30 = 8 м, что соответствует времени запаздывания = 0,024 с. Приняв уровень звуковой мощности источника 85 дБ (певец), а значение коэффициента звукопоглощения = 0,1, определим по формулам (3) и (4) ослабление первого отражения по отношению к прямому звуку.

дБ,

дБ.

Разность уровней звукового давления прямого звука и отраженного от потолка = 2 дБ, т. е. отражение полезно.