Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Планеты.doc
Скачиваний:
2
Добавлен:
15.08.2019
Размер:
453.63 Кб
Скачать

2. Излучение планет

Рис. 3. Схема распределения энергии в спектре излучения планет. Сплошные кривые соответствуют отражённому солнечному излучению, прерывистые - тепловому излучению планет (рядом указаны значения альбедо А планет и эффективной температуры Тэ, их поверхности) .

Спектр излучения любой П. содержит два максимума (рис. 3), один из них соответствует отражённому солнечному излучению, второй - тепловому излучению П. Второй максимум присутствует независимо от величины теплового потока из недр, поскольку часть солнечного излучения поглощается П. и переизлучается в длинноволновой области спектра. Длина волны  λm, на к-рой наблюдается второй максимум, определяется эффективной температурой планеты Тэ в приблизительном соответствии с законом Вина (см. Планка закон излучения):

 λm (мкм) = 2886/Тэ (К)         (1)

Доля солнечной энергии, отражённой от П., определяется величиной интегрального сферического альбедо

А = Ф/Фо,         (2)

где Фо - падающий поток солнечного излучения, Ф - поток, рассеянный П. во все стороны. Значения А и ср. (по всей планете) эффективной темп-ры Тэ связаны ур-нием теплового баланса

 s Тэ4 = 1/4 (1- А)Е0 +q     (3)

где Е0- освещённость, создаваемая Солнцем в подсолнечной точке П., s=5,67.10-8Вт.м-2.К-4 - постоянная Стефана - Больцмана, q - тепловой поток из недр П. Первый член справа в ф-ле (3) - поток излучения Солнца, поглощённый П., слева - уходящий тепловой поток (в расчёте на ед. площади П.). Коэфф. 1/4 в первом члене справа появился из-за того, что падающий поток пропорционален освещённой поверхности (pR2), а уходящий - всей поверхности П. (4pR2, где R - радиус планеты). Для П. земной группы q << E0. Длинноволновый участок спектра теплового излучения простирается в радиодиапазон и изучается методами радиоастрономии.

В каждом данном интервале длин волн уровень, с к-рого уходит излучение (отражённое или тепловое), соответствует, как правило, оптической толще t ≈ 1 (отсчитываемой сверху). Он может располагаться на той или иной высоте в атмосфере, на нек-рой глубине под поверхностью или практически с ней совпадать. Детальное исследование спектра излучения явл. благодаря этому важным источником информации об атмосфере и поверхности П.

УФ-излучение (с λ < 3000 ) уходит из относительно высоких слоев атмосферы. Самые внеш. слои планетных атмосфер (их водородные короны) излучают в основном в линии с λ = 1216 . Механизм свечения - рассеяние излучения Солнца в линии La (см. Лаймана серия)

Видимая, ближняя УФ- и ближняя ИК-области спектра (3000 - 4 мкм) соответствуют излучению поверхности П. (Меркурий, Марс) или облаков в атмосфере (Венера и П.-гиганты) в отражённом солнечном свете. В средней и дальней ИК-областях (λ= 4 мкм -1 мм) наблюдается тепловое излучение поверхности П. (Меркурий, Марс) или атмосферы П. (Венера, П.-гиганты).

Радиоволны миллиметрового, сантиметрового и дециметрового диапазонов излучает грунт Венеры (λ 1 см), Меркурия и Марса, атмосфера Юпитера (λ < 3 см) и др. П.-гигантов.

До сих пор шла речь о тепловом излучении П. Наблюдается также нетепловое радиоизлучение П. (см. Нетепловое излучение). Особенно интенсивно излучение Юпитера, представляющее собой стационарное синхротронное излучение, рождающееся в магнитосфере (3 см<λ<100 см), и излучение в форме всплесков, генерируемое колебаниями ионосферной плазмы (10 м < λ < 1 км).