Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Opt.doc
Скачиваний:
17
Добавлен:
28.07.2019
Размер:
687.62 Кб
Скачать
      1. Интерференция: двухлучевая интерференция, осуществляемая делением амплитуд или фронта, типы соответствующих интерферометров.

Интерференция света — нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. Впервые явление интерференции было независимо обнаружено Робертом Бойлем (1627—1691 гг.) и Робертом Гуком (1635—1703 гг.). Они наблюдали возникновение разноцветной окраски тонких плёнок (интерференционных полос), подобных масляным или бензиновым пятнам на поверхности воды. В 1801 году Томас Юнг (1773—1829 гг.), введя «Принцип суперпозиции», первым объяснил явление интерференции света, ввел термин «интерференция» (1803) и объяснил «цветастость» тонких пленок. Он также выполнил первый демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.

Интерференция света в тонких плёнках

Получить интерференцию света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде. Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто её можно получить, сделав так, чтобы интерферировали волны одного и того же цуга. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной , отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, от чего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где λ — длина волны. Если λ = 550 нм, то толщина плёнки равняется 550:4=137,5 нм.

Лучи соседних участков спектра по обе стороны от λ = 550 нм интерферируют не полностью и только ослабляются, отчего плёнка приобретает окраску. В приближении геометрической оптики, когда есть смысл говорить об оптической разности хода лучей, для двух лучей

ΔL = L2 − L1 = kλ — условие максимума;

ΔL = L2 − L1 = (2k + 1) * λ / 2 — условие минимума,

где k=0,1,2... и L1,2 — оптическая длина пути первого и второго луча, соответственно.

Характерные интерференционные цвета наблюдаем в тонкой стенке мыльного пузыря

Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

Для осуществления интерференции с обычными, нелазерными, источни-

ками света существуют два основных метода получения когерентных волн:

метод деления волны по фронту и метод деления волны по амплитуде.

В первом методе когерентные волны получают с помощью оптического

устройства , позволяющего разделить пучок света , идущего от одного реального источника света, на два пучка. При последующем наложении таких волн будет иметь место интерференционный эффект , т.к. при этом встречаются цуги ( импульсы ) волн, испущенные в один и тот же момент времени. Примерами первого метода получения когерентных волн являются опыты с бипризмами и бизеркалами Френеля , опыт Юнга и другие . Получение когерентных волн по методу деления волны по амплитуде

реализуется в опыте с кольцами Ньютона , при интерференции в тонких

пленках и пластинках и др. В качестве примера реализации первого метода рассмотрим опыт , предложенный ирландским физиком Х. Ллойдом в 1837 году . В этом методе в качестве устройства , разделяющего фронт волны на два, служит плоское зеркало .

      1. Интерференционные фильтры и отражающие покрытия, сущность просветления оптики; линия равного наклона и равной толщины; цвета тонких пленок. Кольца Ньютона, параметры интерференционной картины.

Интерференционные фильтры. Из других применений многолучевой интерференции отметим узкополосные оптические фильтры, пропускающие свет лишь в узком спектральном интервале вблизи заданного значения длины волны. Принцип действия интерференционного фильтра легко понять, представив себе интерферометр Фабри-Перос очень малым расстоянием между отражающими слоями (от l/2 до нескольких длин волн). При падении по нормали света с широким спектральным составом в проходящем свете возникает система максимумов (см.рисунок), расстояние Dl между которыми определяется в < p> соответствии с формулой оптической толщиной nh промежутка между отражающими слоями: Dl = l2/(2nh). Подбором h можно совместить один из максимумов с требуемым значением длины волны l0. Например при оптической толщине nh = 5/2l0 получим Dl = l0/5. Если l0=500 нм, то соседние максимумы, лежащие при l0±Dl, соответствуют l1=400 нм и l2=600 нм. Они могут быть отделены от нужного максимума l0 с помощью обычного стеклянного фильтра. Оставшийся максимум при достаточно высокой отражательной способности R зеркальных слоев может быть очень узок. Его ширина dl, т.е. полоса пропускания интерференционного фильтра, меньше расстояния Dl между соседними максимумами в F раз, где F — резкость полос многолучевой интерференции. При R»0,9 резкость F»30, и при Dl=100 нм имеем dl»3 нм. Из падающего по нормали белого света такой фильтр выделит вблизи l0=500 нм узкий спектральный интервал шириной порядка 3 нм. Чтобы фильтр не давал заметного ослабления света в этой полосе, в качестве отражающих поверхностей используют многослойные диэлектрические покрытия.

Просветле́ние о́птики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления стёкол линз. Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить. Кроме того, тончайшие пленки загрязнений (жир, масло) на поверхности просветляющего покрытия нарушают его работу и резко увеличивают отражение света от загрязненной поверхности. Следует помнить, что следы пальцев со временем разрушают не только просветление, но и поверхность самого стекла. По методике нанесения и составу просветляющего покрытия просветление бывает физическим (напыление) и химическим (травление).

Однослойное просветление. Толщина просветляющего слоя (например, кремниевой кислоты) равняется 1/4 длины световой волны. В этом случае лучи, отражённые от её наружной и внутренней сторон, погасятся вследствие интерференции и их интенсивность станет равной нулю. Для наилучшего эффекта показатель преломления просветляющей плёнки должен равняться квадратному корню показателя преломления оптического стекла линзы. Наиболее подходящим материалом для просветляющей пленки является фторид бария, обладающий весьма низким (n=1,38) показателем преломления. Однако, фторид бария растворим в воде и требует нанесения защитного покрытия. Отражательная способность стекла, просветленного таким способом, сильно зависит от длины волны, что является основным недостатком однослойного просветления. Минимум отражательной способности соответствует длине волны λ=4d·n, где d — толщина пленки, n — ее показатель преломления, В первых просветлённых объективах добивались понижения коэффициента отражения для лучей зелёного участка спектра (555 нм — область наибольшей чувствительности человеческого глаза), поэтому на отражение, стекла таких объективов имели сине-фиолетовую или голубовато-зелёную окраску («голубая оптика»). Напротив, пропускание света таким объективом максимально на этой длине волны, что приводило к заметному окрашиванию изображения. В настоящее время однослойное просветление часто используется для лазерной оптики, рассчитанной на работу в узком спектральном диапазоне. Используя стекла с относительно высоким показателем преломления и напыляя пленку фторида бария, удается добиться минимальной отражающей способности около 1 %. Главным преимуществом такого просветления является его дешевизна.

Многослойное просветление. Многослойное просветляющее покрытие представляет собой последовательность чередующихся слоев (их число достигает 15 и более) из двух (или более) материалов с различными показателями преломления. Многослойные просветляющие покрытия характеризуются низкими потерями на отражение (узкополосные покрытия для лазерной оптики с отражательной способностью около 0,2 % и менее, широкополосные — до 0,5 %). Основное преимущество многослойного просветления применительно к фотографической и наблюдательной оптике — незначительная зависимость отражательной способности от длины волны в пределах видимого спектра (на графике отражательной способности от длины волны наблюдаются два и более минимума, разделенных небольшими максимумами, а за пределами рабочей полосы наблюдается сильный рост отражательной способности), что существенно уменьшает искажения цвета. Отражения от поверхности линз с многослойным просветлением в зависимости от качества имеют различные оттенки зеленого и фиолетового цвета, вплоть до очень слабых серо-зеленоватых у объективов последних годов выпуска. Оптика с многослойным просветлением ранее маркировалась буквами МС (например, МС Мир-47М 2,5/20). В настоящее время специальное обозначение многослойного просветления встречается редко, так как его использование стало стандартом. Иногда встречаются «фирменные» обозначения особых его разновидностей SMC (Pentax), Super Integrated Coating, Nano (Nikon) и другие. В состав многослойного просветляющего покрытия, помимо собственно просветляющих слоев, обычно входят вспомогательные слои — улучшающие сцепление со стеклом, защитные, гидрофобные и др.

Линии равного наклона. Рассмотрим теперь задачу об отражении световой волны от плоскопараллельной пластины (“тонкой пленке”). Часть света отражается от верхней поверхности пластины (“первая волна”), часть проникает внутрь ее. После отражения проникшей в толщу пластины волны от нижней ее поверхности и преломления на верхней поверхности (“вторая волна”) две эти волны будут распространяться в одном направлении.

Коэффициент отражения прозрачных материалов невелик - порядка нескольких процентов. Поэтому обе волны имеют примерно равную амплитуду. Амплитуда суммарных колебаний в некоторой удаленной зоне наблюдения зависит, естественно, зависит от разности фаз, а эта последняя - от разности хода, которую несложно подсчитать.

После падения на верхнюю поверхность пластины до зоны наблюдения лучи 1 и 2 проходят разные пути. При этом следует учесть такие обстоятельства. При подсчете разности путей, проходимых двумя волнами путь пройденный в веществе необходимо умножать на показатель преломления n - для подсчета разности фаз, собственно важна разность времен распространения волн, а в веществе скорость распространения в n раз меньше. Кроме того при отражении волны от верхней поверхности происходит потеря полуволны - изменение фазы на .

При наблюдении пластины под некоторым углом мы будем видеть ее либо темной либо светлой. Светлой она будет в том случае, если оптическая разность хода равна целому числу длин волн.

Если в разных точках поверхности пластины углы падения разные, вдоль линий с одинаковым углом падения, удовлетворяющем условию максимума, мы будем наблюдать светлые полосы, между ними - темные. Эти линии и называются линиями равного наклона - имеется ввиду “наклон” падающего луча света. При освещении пластины белым светом мы можем увидеть разные ее части окрашенными - для разных длин волн условие максимума выполняется при разных углах падения.

Полосы равной толщины. один из эффектов оптики тонких слоев, в отличие от полос равного наклона, наблюдаются непосредственно на поверхности прозрачного слоя переменной толщины. Возникновение П. р. т. обусловлено интерференцией света, отражённого от передней и задней границ слоя, или света, проходящего прямо через слой, с дважды отражённым на его границах (П. р. т. в проходящем свете). Полосами в строгом смысле (отчётливыми, попеременно тёмными и светлыми) обычно являются лишь П. р. т. монохроматическом или близком к нему (свете, длины волн λ которого заключены в сравнительно небольшом интервале). При этом максимумы и минимумы освещённости полос совпадают с линиями на поверхности слоя, по которым Разность хода интерферирующих лучей одинакова и равна целому числу λ/2. На этих линиях одинакова геометрическая толщина слоя — отсюда название «П. р. т.». При освещении белым светом наложение П. р. т., отвечающих лучам с разными λ, создаёт сложную радужно-цветовую картину, в которой П. р. т. лучей с отдельными λ зачастую неразличимы. П. р. т. обусловливают радужную окраску тонких плёнок (мыльных пузырей, масляных и бензиновых пятен на воде, плёнок окислов на металлах, в частности Цвета побежалости, и пр.). Их используют для определения микрорельефа тонких пластинок и плёнок, в ряде Интерферометров и др. устройств для точных.

При освещении прозрачной пленки часть световой волны отражается от передней поверхности, часть от задней, благодаря чему встречаются волны с некоторой разностью хода. Нетрудно видеть, что эта разность хода зависит от толщины пленки, определяющей длину пути волны внутри пленки. В тех местах пленки, где эта разность хода достигает четного числа полуволн, обе части волны взаимно усиливают друг друга (максимум), там же, где разность хода выражается нечетным числом полуволн, имеет место взаимное ослабление (минимум). Так как пленка в разных местах может иметь разную толщину, то области максимумов и минимумов дают на ее поверхности картину темных и светлых мест, если опыт производится в монохроматическом (одноцветном) свете, или картину разноцветных полос, если применяется белый свет. Для наблюдения этой интерференционной картины, надо рассматривать поверхность пленки, т. е. аккомодировать глаз на ее поверхность. Это значит, что интерференционная картина локализована (находится) вблизи поверхности пленки. В некоторых случаях это можно обнаружить, перемещая вдоль поверхности пленки миниатюрный приемник света (фотоэлемент или термоэлемент), соединенный с гальванометром. Чередующиеся при перемещении фотоприемника максимальные и минимальные показания гальванометра подтверждают неравномерное распределение освещенности в интерференционном световом поле около пленки. Картина интерференционных полос в подобных опытах показывает, каким образом распределены области одинаковой толщины в пленке, и позволяет в известной мере судить о виде пленки. Такую пленку можно изготовить, окунув проволочное кольцо в мыльный раствор и расположив кольцо вертикально. Под действием силы тяжести раствор стекает книзу и пленка принимает форму клина, пологого вверху и постепенно расширяющегося книзу. Рассматривая такой клин, освещенный светом Солнца или проекционного фонаря, мы увидим ряд горизонтальных цветных полос, параллельных ребру клина, Полосы повторяются в известной последовательности цветов. В монохроматическом свете (красный светофильтр) получим чередование светлых (красных) и темных полос той же формы. В пленках со случайным распределением толщины (например, в пленке нефти на поверхности воды) расположение полос максимумов и минимумов.

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному).

4.2 Расчет интерференционной картины от двух источников. Рассмотрим более подробно основные свойства интерференционной картины, создаваемой двумя источниками электромагнитных волн одинаковой интенсивности и наблюдаемой на плоском экране, расположенным на расстоянии l от плоскости расположения от источников. В качестве таких источников могут мыслиться, например две бесконечно-узкие, параллельные друг - другу щели или два отверстия бесконечно малого диаметра, расстояние между которыми d<<l , прорезанные в плоском непрозрачном экране. Пусть источники электромагнитных волн располагаются в однородной среде с показателем преломления n. Область, в которой волны источников перекрываются, называется полем интерференции. В поле интерференции имеются места, где волны источников будут складываться в фазе. В этих местах будут отмечаться максимумы интенсивности электромагнитного поля. Там же, где волны будут складываться в противофазе - минимальная интенсивность . Если в поле интерференции поместить непрозрачный экран, то будет наблюдается чередование светлых и тёмных полос, представляющие собой интерференционную картину. Параметрами интерференционной картины являются положение её максимумов и минимумов , а также связанная с ними ширина полос интерференционной картины. Порядком интерференционного максимума называют его номер 'm', отсчитываемый от центрального (m=0), которому соответствует центр интерференционной картины , где складываются волны от источников, проходящие одинаковый путь (l1=l2). Аналогичным образом можно найти положения минимумов интерференционной картины двух источников, определяемые координатами , если положить оптическую разность хода кратной нечётному числу полуволн. Ширина интерференционной полосы определяется, как расстояние между соседними интерференционными максимумами или минимумами, интерференционные порядки которых отличаются на единицу. Для рассматриваемой интерференционной картины двух источников волн одинаковой интенсивности ширина полосы оказывается равной:

      1. Дифракция: дифракция Френеля и Фраунгофера, дифракция на щели, на круглом отверстии, на прямоугольном отверстии, на решетке. Предел разрешающей способности оптических приборов, критерии Релея.

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн. Первоначально понятие дифракции относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как частный случай интерференции (интерференция вторичных волн).

Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана. На рисунке схематично изображён (слева) непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется на другом экране - справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затемнена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец. Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода.

Интеграл Френеля. В скалярной теории дифракции распределение электрического поля дифрагирующего света в точке (x,y,z) задаётся выражением Релея-Зоммерфельда: , где , .

В аналитическом виде этот интеграл представим, только для простейших геометрий отверстий, поэтому он вычисляется обычно численными методами.

Аппроксимация Френеля. Главная трудность при вычислении интеграла представляет собой выражение для r. Во-первых, упростим вычисления, сделав замену переменных: Далее подставляя: . Воспользуемся разложением в р.Т.

Если мы рассмотрим все члены разложения это будет точным выражением. Подставим это выражение в аргумент экспоненциальной функции под интегралом; ключевую роль в приближении Френеля играет пренебрежение третьего члена в разложении, который предполагается малым. Чтобы это было возможным, он должен слабо влиять на показатель степени. Другими словами, он должен быть намного меньше чем период показателя экспоненты, то есть 2π:

Если это условие выполняется для всех значений x, x' , y и y' , тогда мы можем пренебречь третьим членом в разложении Тейлора. Более того, если третий член мал, то все последующие слагаемые более высоких порядков тоже малы и ими можно пренебречь. Тогда можно аппроксимировать выражение используя два члена разложения: Это выражение называется приближением Френеля, а неравенство полученное ранее есть условие применимости этого приближения.

Дифракция Френеля. Условие применимости достаточно слабо, и позволяет все характерные размеры взять как сравнимые величины, если апертура много меньше, чем длина пути. К тому же так как нас интересует только малая область недалеко от источника величины x и y много меньше чем z, предположим θ=0, что означает cosθ=1 и r в знаменателе можно аппроксимировать выражением r≈z. В противоположность дифракции Фраунгофера, дифракция Френеля должна учитывать кривизну волнового фронта, для того чтобы правильно учесть относительные фазы интерферирующих волн. Электрическое поле для дифракции Френеля в точке (x,y,z) дано в виде:

Это - интеграл дифракции Френеля; он означает, что, если приближение Френеля действительно, распространяющееся поле - сферическая волна, начинающаяся в апертуре и движущаяся вдоль z. Интеграл модулирует амплитуду и фазу сферической волны. Аналитическое решение этого выражения возможно только в редких случаях.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Расстояние должно быть таким, чтобы можно было пренебречь в выражении для разности фаз членами порядка ρ2 /zλ, что сильно упрощает теоретическое рассмотрение явления. Здесь z — расстояние от отверстия или преграды до плоскости наблюдения, λ — длина волны излучения, а ρ — радиальная координата рассматриваемой точки в плоскости наблюдения в полярной системе координат. Иными словами, дифракция Фраунгофера наблюдается тогда, когда число зон Френеля F<<1 , при этом приходящие в точку волны являются практически плоскими. При наблюдении данного вида дифракции изображение объекта не искажается и меняет только размер и положение в пространстве. В противоположность этому, при дифракции Френеля изображение меняет также свою форму и существенно искажается.

Дифракция Френеля Дифракция Фраунгофера

Дифракционные явления Фраунгофера имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности, дифракционных решёток. В последнем случае для наблюдения светового поля «в бесконечности» используются линзы или вогнутые дифракционные решетки (соответственно, экран ставится в фокальной плоскости).

В скалярной теории дифракция Фраунгофера определяется следующим интегралом:

Дифракция на щели. Пусть плоская монохроматическая волна падает на экран с узкой бесконечно длинной щелью. На рис. 1 FF1 -- проекция экрана со щелью AB на плоскость рисунка. Ширина щели (b) имеет размер порядка длины волны света. Щель AB вырезает часть фронта падающей световой волны. Все точки этого фронта колеблются в одинаковых фазах и на основании принципа Гюйгенса-Френеля, являются источниками вторичных волн.

Вторичные волны распространяются по всем направлениям от (0) до (+-π/2 ) к направлению распространения волн (рис. 1). Если за щелью поставить линзу, то все лучи, которые шли до линзы параллельно, соберутся в одной точке фокальной плоскости линзы. В этой точке наблюдается интерференция вторичных волн. Результат интерференции зависит от числа длин полуволн, которое укладывается в разности хода между соответствующими лучами.

Рассмотрим лучи, которые идут под некоторым углом φ к направлению падающей световой волны (рис. 2). BC=δ -- разность хода между крайними лучами. Разобьем AB на зоны Френеля (зоны Френеля в данном случае представляют собой систему параллельных плоскостей, перпендикулярных плоскости рисунка и построенных так, что расстояние от краев каждой зоны до точки O1 отличается на λ/2).

Если в δ уложится четное число длин полуволн, то в точке O1 будет ослабление света -- min. Если нечетное, то усиление света -- max.

m=0,1,2,…

Поскольку δ=bsinφ(см. рис. 2), то эти условия можно записать в следующем виде: ->min ->max

На рис. 3 дано распределение интенсивности света при дифракции на щели в зависимости от угла. Её можно вычислить по формуле: Где I0 – инт. Света в сер. Дифр. Картины

- инт. В точке. Определяемой значением

Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифрак╜ционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром отверстия (рис. 259). Экран параллелен плоскости отверстия и находится от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами (см. (177.1) и (177.6)), A=A1/2+-Am/2 где знак плюс соответствует нечетным m и минус ≈ четным т

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсив╜ность) в точке В будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю. Если отверстие открывает одну зону Френеля, то в точке В амплитуда А=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (см. ╖ 177). Интенсивность света больше соответственно в четыре раза. Если отверстие открывает две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если m нечетное ≈ то светлое кольцо), причем интенсивность в максимумах убывает с расстоянием от центра картины. Расчет амплитуды результирующего колебания на внеосевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непроз╜рачным экраном. Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены. Число зон Френеля, открываемых отверстием, зависит от его диаметра. Если он большой, то Аm<<A1 и результирующая амплитуда A=A1/2, т. е. такая же, как и при полностью открытом волновом фронте. Никакой дифракционной картины не наблю╜дается, свет распространяется, как и в отсутствие круглого отверстия, прямолинейно.

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья. Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр. Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d. Если известно число штрихов (N), приходящихся на 1 мм решётки, то период решётки находят по формуле: d = 1 / N мм. Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид: где d — период решётки, α — угол максимума данного цвета, k — порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки, λ — длина волны. Если же свет падает на решётку под углом θ, то: . Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ — для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Разрешение принципиально ограничено дифракцией на объективе: видимые точки являются ничем иным, как дифракционными пятнами. Две соседние точки разрешаются, если минимум интенсивности между ними достаточно мал, чтобы его разглядеть. Для снятия зависимости от субъективности восприятия был введен эмпирический критерий разрешения Рэлея, который определяет минимальное угловое расстояние между точками sinθ=1.22λ/D

где θ — угловое разрешение (минимальное угловое расстояние), λ — длина волны, D — диаметр входного зрачка оптической системы (часто он совпадает с диаметром объектива). Учитывая чрезвычайную малость угла θ, в оптической литературе вместо синуса угла обычно пишут сам угол. Коэффициент подобран так, чтобы интенсивность в минимуме между пятнами была равна примерно 0,75-0,8 от интенсивности в их максимумах — считается, что этого достаточно для различения невооруженным глазом.

Предельная разрешающая способность – это минимальное расстояние между двумя точками, при котором их изображение отличимо от изображения одной точки. Критерий Релея гласит, что при провале в распределении интенсивности в изображении двух близких точек в 20% точки будут восприниматься как раздельные. Для этого необходимо, чтобы центральный максимум в изображении одной точки приходился бы на первый минимум в изображении другой. Разрешение по Релею удовлетворительно характеризует качество изображения астрономических телескопов, спектральных приборов, для которых предметами являются близко расположенные точки или линии, а также визуальных приборов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]