Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shporyy.doc
Скачиваний:
2
Добавлен:
07.07.2019
Размер:
896 Кб
Скачать

2 Анализ процессов реабсорбции в нефроне.

В извитых канальцах первого порядка реабсорбируется 80 % натрия, за которым по осмотическому градиенту движется в кровоток вода. Вследствие того, что реабсорбируется2А объема ультрафильтрата, объем мочи уменьшается в 8 раз и одновременно увеличивается во столько же раз концентрация растворенных в ней веществ. Под влиянием концентрационного градиента пассивно за счет диффузии реабсорбируются в кровь аминокис¬лоты, глюкоза, фосфаты, бикарбонаты и другие вещества. Концентрация первичной мочи в извитом канальце первого порядка изотонична крови почечной артерии. В нисходящем кональце петли нефрона осмотическая концентрация мочи нарастает, достигая максимума в месте поворота петли: здесь она более чем в 7 раз превышает осмотическую концентрацию крови почечной артерии. По мере продвижения мочи по восходящему колену петли нефрона в направлении от почечного сосочка к корковому слою осмотическая концентрация мочи вновь снижается. Спускаясь затем по дистальному канальцу и особенно по собирательной трубке к почечному сосочку, моча вновь приобретает высокую осмотическую концентрацию.Осмотическая концентрация в почке возрастает в направлении от коркового слоя к мозговому и достигает максимума у сосочков лоханки. В почечном поворотно-противоточном механизме «движущей силой» является активная реабсорбция натрия на всей протяженности восходящего колена петли Генле. Вследствие этого и достигается столь большая осмотическая разница вдоль канальцев нефрона при отсутствии на любом уровне поперечного градиента. В этом участке нефрона натрий активно реабсорбируется, а вода не пропускается. При прохождении мочи через нисходящий отдел петли Генле она постепенно концентрируется вследствие перехода воды в тканевую жидкость по осмотическому градиенту, создаваемому выходом натрия из рядом расположенной восходящей части петли Генле. Переход натрия из дистального отдела петли Генле повышает осмотическое давление тканевой жидкости, которое компенсируется встречным током воды. Процессы выхода воды и натрия сопряжены.В извитых канальцах второго порядка происходит дальнейшее всасывание натрия, калия, воды, аминокислот, глюкозы и других веществ за счет тех же самых механизмов, что и при реабсорбции в извитых канальцах первого порядка. Эта реабсорбция не является постоянной, а зависит от уровня натрия, калия и других веществ крови и мочи (факультативная реабсорбция).В собирательных трубках моча окончательно концентрируется благодаря пассивному току воды по осмотическому градиенту, создаваемому пово-ротно-противоточным механизмом. Реабсорбция глюкозы. Благодаря фильтрации глюкоза свободно проходит через почечный барьер и содержится в первичной моче в той же концентрации, что и в плазме. В проксимальном извитом канальце реабсорбируется 98 % всей отфильтрованной глюкозы. Реабсорбция аминокислот. Механизмы выделения аминокислот и глюкозы в общем однотипны. РЕАБСОРБЦИЯ БЕЛКОВНизкомолекулярные белки в небольших количествах (10—100 мг в 1 л фильтрата) могут проходить через почечный барьер. Механизм реабсорбции белков связан со способностью клеток проксимальных канальцев захватывать белки путем пиноцитоза, а затем расщеплять их при участии лизосом. Таким путем может реабсорбироваться до 30 мг белков в 1 мин. При повреждении мембран клубочка и капсулы фильтрация белков возрастает и белок появляется в конечной моче (про-теинурия).Мочевина беспрепятственно фильтруется в клубочках. В проксимальных отделах нефрона в результате реабсорбции воды происходит концентрирование мочевины в моче. Благодаря транска-нальцевому градиенту концентрации мочевина свободно поступает в кровь через клеточные мембраны путем пассивного транспорта в виде диффузии.Реабсорбция воды и солей. объем мочеотделения (диурез) составляет лишь небольшую часть объема клубочкового фильтрата. При нормальном употреблении воды с мочой выделяется не более 1 % объема фильтрата, образующегося за единицу времени, а 99 % реабсорби¬руется в кровоток. При избыточном потреблении воды диурез возрастает и может достигать 15 % от объема фильтрации, а канальцеваяреабсорбция воды снижается до 85 %. Ионы Na+, К+, Са2+, Mg2+и НСОз содержатся в клубочковом фильтрате в тех же концентрациях, что и в плазме крови. В конечной моче остается очень небольшая часть этих ионов, подлежащих удалению. Большая часть их реабсорбируется главным образом в проксимальном извитом канальце.

3 Объясните с системных позиций механизмы адаптации организма к условиям высокогорья (при кратковременном и длительном пребывании в горах). Охарактеризуйте особенности дыхания при повышенном давлении. Опишите механизмы развития горной и кессонной болезни.Дыхание на большой высоте. По мере подъема на высоту парциальное давление кислорода падает параллельно снижению атмосферного давления. При вдыхании атмосферного воздуха с уменьшенным парциальным давлением кислорода в организме возникает гипоксия, дыхательным ответом на которую является усиление легочной вентиляции. В результате гипервентиляции из организма в избытке удаляется двуокись углерода, развивается гипокапния и появляется связанный с ним сдвиг рН в основную сторону (алкалоз). Этот процесс в определенной степени тормозит прирост легочной вентиляции и снижает участие внешнего дыхания в компенсации гипоксии. Дыхание становится поверхностным и частым. При нарастании гипоксии человек теряет сознание, а затем погибает.Негативное влияние гипоксии на больших высотах (при подъеме в условиях высокогорья) усугубляется тем, что человек не в состоянии объективно оценить опасность, так как развитие гипоксии сопровождается эйфорией. Для предотвращения гипоксических нарушений необходимо контролировать подъем и продолжительность пребывания человека на высоте. Эффективным средством профилактики гипоксических нарушений при подъеме на высоту является использование кислорода для дыхания. Для этого применяют специальные кислородные аппараты. Дыхание при повышенном давлении. Под водой человек вынужден дышать воздухом, подаваемым в легкие из баллона под избыточным давлением, нарастающим по мере погружения.При повышении парциального давления газов физическая растворимость их в плазме крови и других жидкостях организма увеличивается. Особенно это касается азота, который в наибольшем количестве содержится во вдыхаемом воздухе, следовательно, и парциальное давление будет при этом наивысшим. При пребывании человека в течение продолжительного времени на большой глубине азот, находящийся при высоком парциальном давлении во вдыхаемом воздухе, в избытке растворяется в плазме крови. При быстром подъеме на поверхность растворенный в крови азот быстро возвращается в газообразное состояние, мелкие его пузырьки закупоривают кровеносные сосуды, особенно капилляры и артериолы. В результате газовой эмболии нарушается кровообращение в различных органах, которое сопровождается резкими болями в мышцах, головокружением, потерей сознания, нервными расстройствами, парезами и параличами; в первую очередь страдают функции ЦНС (кессонная болезнь). Для предотвращения кессонной болезни необходим медленный подъем человека на поверхность для того, чтобы азот мог постепенно выйти из организма без образования пузырьков газа. Сразу после подъема проводят постепенную декомпрессию человека в барокамере, в которой создано повышенное давление, имитирующее давление вдыхаемого воздуха при погружении* Постепенно в течение нескольких часов производят снижение давления, позволяющее медленно вывести из организма избыток растворенного газа. В ряде случаев при работе на больших глубинах используют газовые смеси, лишенные азота (например, гелио-кислородную), которые наряду со снижением опасности развития кессонной болезни снимают токсическое действие азота (азотное опьянение) на глубине.

4 Охарактеризуйте особенности проводникового и коркового отделов зрительного анализатора, физиологический механизм и значение бинокулярного зрения. Аксоны ганглиозных клеток дают начало зрительному нерву. Зрительный нерв состоит из 106 аксонов, которые передают сигналы от фоторецепторов сетчатки одного глаза. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних (носовых) половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных (височных) половин каждой сетчатки, продолжают идти с той же стороны, объединяясь вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга. Подкорковые центры зрительного анализатора .Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны латерального коленчатого тела обладают простыми рецептивными полями подобно ганглиозным клеткам сетчатки. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза. Взаимодействие возбуждений на нейронах латерального коленчатого тела осуществляется на основе механизма реципрокного торможения. Нервные клетки верхних бугорков четверохолмия преимущественно реагируют на движущиеся световые стимулы. Некоторые из них возбуждаются только в том случае, когда стимул движется через их рецептивное поле в определенном направлении. В более глубоких слоях бугорков находятся нервные клетки, которые возбуждаются в моменты, предшествующие движениям глазных яблок. Эти клетки включены также в механизмы управления целенаправленным движением глаз. Корковые центры зрительного анализатора. Аксоны нейронов латерального коленчатого тела расходятся в виде лучей (зрительная радиация) и оканчиваются в основном в поле 17-й затылочной доли коры мозга (первичная зрительная кора). Первичная зрительная кора образует связи с полями 18 и 19 (вторичная и третичная зрительная кора), а также с верхними бугорками четверохолмия. В первичной, вторичной и третичной зрительной коре представлена вся контралатеральная половина поля зрения. Обработка возбуждений нейронами зрительной коры. Движение глаз и бинокулярное зрение. Перемещение зрительного изображения по сетчатке достигается постоянными сканирующими движениями глаз — саккадами, что является необходимым условием нормального акта зрительного восприятия видимых предметов. Периоды фиксации длятся в среднем от 0,15 до 2 с. Сканирующие движения глаз крайне необходимы, например, при чтении текста. Они контролируются нейронами со сложными рецептивными полями 18 и 19 зрительной коры головного мозга. Смена коротких периодов фиксации на сетчатке изображений объекта за счет движений глаз создает в головном мозге стационарное «изображение» — субъективный образ внешнего мира. Саккадические движения глаз, как и любая двигательная активность человека, могут служить показателями его внутреннего психологического состояния. Такие состояния человека, как внимание, интерес, усталость, страх, существенно влияют на характеристики движений глаз, отражая общее эмоциональное состояние. Глазные мышцы и формы движения глаз. Глаз человека приводится в движение шестью наружными мышцами. Эти мышцы создают горизонтальные, вертикальные и вращательные движения глазного яблока, обеспечивая перемещение по сетчатке сфокусированного изображения светового стимула. Движения двух глаз могут быть содружественными, т.е. двигаться вместе вверх, вниз, влево или вправо, а могут быть конвергентными (сходя¬щимися) или дивергентными (расходящимися) при рассматривании близ¬корасположенного или далекого предмета. Конвергентные и дивергентные движения глаз обеспечивают восприятие глубины пространства.Механизм регуляции одновременного движения правого и левого глазных яблок создает эффект бинокулярного зрения. При этом конвергентные и дивергентные движения обоих глаз управляют¬ся нейронами, находящимися как в подкорковых структурах, так и в коре большого мозга. Центры бинокулярного зрения находятся в области рети¬кулярной формации среднего мозга, в верхних бугорках четверохолмия и в претектальной области. Ретикулярная формация среднего мозга является интегрирующим центром, получающим информацию по афферентным путям не только от верхних бугорков четверохолмия и зрительных корко¬вых полей 18 и 19, но и непосредственно от фоторецепторов сетчатки. Ядра глазодвигательных нервов находятся также под корригирующим влиянием мозжечка, обеспечивающим более точное сведение зрительных осей обоих глаз к одной и той же точке. В мозжечке вестибулярные и зрительные сиг¬налы интегрируются с сигналами, отражающими положение головы и глаз. Интегрированные возбуждения передаются по мозжечковым эфферентным путям к стволовым центрам, управляющим бинокулярным зрением.

БИЛЕТ № 26 1 Рассмотрите важнейшие физиологические свойства нервных центров, обеспечивающие процессы адаптации к изменениям внешних условий или внутренней среды организма.Свойства нервных центров:1.Одностороннее проведение возбуждения. В ЦНС возбуждение может распространяться только в одном направлении: от рецепторного нейрона через вставочный к эфферентному нейрону, что обусловлено наличием синапсов.2.Более медленное проведение возбуждения по сравнению с нервными волокнами. Промежуток времени от момента нанесения раздражения на рецептор до ответной реакции исполнительного органа называется временем рефлекса. Большая его часть тратится на проведение возбуждения в нервных центрах, где возбуждение проходит через синапсы. На выделение и диффузию медиатора в синапсе требуется промежуток времени в 1,5-2 мс (синаптическая задержка). Чем больше нейронов в рефлекторной дуге, тем продолжительнее время рефлекса.3.Суммация возбуждений (или торможения). Нервные центры могут суммировать афферентные импульсы, что проявляется в усилении рефлекса при увеличении частоты раздражений или числа раздражаемых рецепторов. Различают два вида суммации: временная суммация — если импульсы приходят к нейрону по одному и тому же пути через один синапс с коротким интервалом, то происходит суммирование ВПСП на постсинаптической мембране и она деполяризуется до уровня, достаточного для генерации ПД; пространственная суммация связана с суммированием ВПСП, возникающих одновременно в разных синапсах одного нейрона. Оба вида суммации происходят в области аксонного холмика, где и генерируется ПД.4.Конвергенция. В нервном центре несколько клеток могут передавать импульсы к одному нейрону, т. е. возбуждения конвергируют на нем. Конвергенция может быть результатом прихода возбуждающих или тормозных входных сигналов от различных источников. Так, моторные нейроны спинного мозга могут получать импульсы: от периферических нервных волокон, входящих в спинной мозг; волокон, соединяющих сегменты спинного мозга; кортикоспинальных волокон от коры мозга; тормозных путей от ретикулярной формации. В результате конвергенции происходит суммация импульсов от этих источников и возникает ответ, являющийся суммарным эффектом разнородной информации.5.Дивергенция и иррадиация. Возбуждение даже единственного нервного волокна, по которому импульсы поступают в нервный центр, может послужить причиной возбуждения множества выходящих из центра нервных волокон. Морфологическим суб¬стратом широкого распространения импульсов (иррадиации) возбуждения является ветвление аксонов и наличие большого числа вставочных нейронов в пределах центра.6.Облегчение и окклюзия. На нейронах нервных центров оканчиваются не только волокна их собственных афферентных входов. Каждый из них получает веточки от афферентов соседнего центра, что может обусловливать развитие окклюзии (закупорки) или, наоборот, облегчения.7.Трансформация ритма возбуждений. Если сопоставить частоту импульсов в задних (чувствительных) и передних (двигательных) корешках спинного мозга при раздражении рецепторов, то обычно их ритм не совпадает. Центры способны как снижать, так и повышать ритмы возбуждений, поступающих от рецепторов.8.Рефлекторное последействие. Продолжительность рефлекса всегда больше, чем время раздражения, так как возбуждение в нервных центрах сохраняется в течение некоторого времени после прекращения действия раздражителя. Это объясняется тем, что вставочные нейроны в центре образуют замкнутые цепи («нейронные ловушки»), по которым ПД могут длительно циркулировать.9.Высокая чувствительность к недостатку кислорода. Уменьшение доставки к клеткам мозга кислорода быстро ведет к тяжелым расстройствам деятельности ЦНС и гибели нейронов. Кратковременное нарушение кровоснабжения мозга вследствие временного спазма его сосудов или падения давления крови приводит к потере сознания — обмороку. Своевременно принятые меры по восстановлению кровоснабжения мозга (нашатырный спирт, кофеин, горизонтальное положение тела и др.) выводят больного из обморока.10.Высокая чувствительность к химическим веществам объясняется большим числом синапсов. На одном нейроне могут располагаться синапсы, обладающие чувствительностью к различным химическим веществам. Подбирая фармакологические препараты, которые избирательно блокируют одни синапсы, оставляя другие в рабочем состоянии, можно корректировать реакции организма.11.Низкая функциональная подвижность (лабильность) и высокая утомляемость. Нервные центры, как и синапсы, обладают низкой функциональной подвижностью и быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми и имеют высокую лабильность.12.Посттетаническаяпотенциация — явление усиления рефлекторного ответа после длительного ритмического раздражения нервного центра. Это связано с сохранением ВПСП на нейронах центра в течение некоторого времени, что облегчает проведение последующих возбуждений через синапсы.13.Тонус нервных центров. Регистрация биоэлектрической активности ЦНС даже при отсутствии раздражений показывает, что многие нервные центры (составляющие их нейроны) постоянно генерируют импульсы. Эта импульсация поступает к рабочим органам и свидетельствует о существовании некоторого постоянного тонического возбуждения нервных центров.14.Пластичность. Нервные центры обладают способностью изменять собственное функциональное назначение и расширять свои функциональные возможности, т.е. существенно модифицировать картину осуществляемых рефлекторных реакций. Пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]