Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор8_нефть_2010.doc
Скачиваний:
310
Добавлен:
08.05.2019
Размер:
5.43 Mб
Скачать

И

Рис.6.14. Кристаллическая решетка газового гидрата.

Элементарные ячейки гидрата: а — структуры I, б — структуры II

ндивидуальные газы
образуют простые гидраты структуры I и II типов: додекаэдр и тетрадекаэдр и додекаэдр и гексадекаэдр, соответственно (рис.6.13). Структуры I и II – кубические (рис.6.14).

Каждая элементарная ячейка гидрата структуры I состоит из 46 молекул воды, образующих две малые (додекаэдры) и шесть больших (тетрадекаэдры) полостей.

В малых полостях структуры I могут располагаться молекулы газа, размер которых не превышает 0,52 нм (Ar, CH4, H2S, CO2), в больших – 0,59 нм (C2H6, SO2).

Если полностью заполнены большие и малые полости, то состав такого гидрата можно выразить формулой: 8Х *46 H2O или Х *5,75 H2O.

Газы, размер молекул которых находится в пределах 0,59 - 0,69 нм (C3H8, i-C4H10), образует гидраты структуры II. Элементарная ячейка таких гидратов состоит из 16 малых и 8 больших полостей (гексадекаэдр), образованных 136 молекулами воды. Диаметр малых полостей составляет 0,48 нм, больших - 0,69 нм. Если газ заполняет только большие полости, то состав гидрата определяется по формуле: 8 Х *136 H2O.

При наличии смеси газов с молекулами различного диаметра образуются двойные гидраты, у которых заполнены как малые, так и большие полости. Состав гидрата при этом определяется формулой

8 Х ∙16Y ∙136 H2O или Х ∙2 Y ∙17 H2O.

В условиях добычи и транспортирования природных газов в большинстве случаев образуются смешанные гидраты, в состав которых входят двойные гидраты структуры II, большие полости которых заняты пропаном и изобутаном, а малые – метаном, H2S, CO2, а также простые гидраты структуры I, состоящие из метана, этана, H2S, CO2 и т.д.

Наиболее легкие газы (Hе, H2), молекулы которых имеют малые размеры, самостоятельно гидратов не образуют. Однако в смеси с другими газами, образующими гидраты, они могут занимать некоторое число полостей в гидратах.

Величина n, отношение числа молекул воды и газа–гидратообразователя, в реальных условиях может значительно возрастать из-за неполного заполнения пустот решетки гидрата молекулами газа. Таким образом, величина n зависит от температуры и давления.

Состав гидратов. Состав гидрата отдельного газа–гидратообразователя остается неизменным в широком диапазоне давлений и температур, меняется лишь молярное соотношение газа и воды (n) по мере изменения степени заполнения элементарных ячеек молекулами газа.

Состав гидратов, образуемых природными газами, зависит от состава исходного газа, давления и температуры.

Таблица 6.4. Состав газа в гидрате, % об.

Компоненты

CH4

C2H6

C3H8

i-C4H10

CO2

N2

Исходный газ

92,00

4,0

1,26

0,52

0,12

2,10

Газ в гидрате (P = 0,9 МПа, t = 0C)

53,00

3,1

20,50

22,50

0,70

0,20

Газ в гидрате (P = 11 МПа, t = 20C)

62,54

3,1

13,17

20,97

0,03

0,19

И

Рис.6.15. Максимальное содержание водяных паров в газе в зависимости от давления и температуры

з таблицы следует, что состав газа в гидрате не совпадает с составом исходного газа, то есть способность углеводородов переходить из газовой фазы в состав гидратов различна. Эта способность углеводородных газов увеличивается с возрастанием их молекулярной массы.

Состав газа в гидрате зависит от парциального давления компонента Pi в газовой фазе и степени заполнения полостей в структурах гидрата.

При одинаковом давлении природные газы образуют гидраты при более высокой температуре, чем индивидуальные углеводороды. Образованию гидратов способствуют сероводород и углекислый газ. При содержании в газе даже небольшого количества сероводорода температура начала образования гидратов заметно повышается. Влияние углекислого газа значительно слабее. Азот и углеводороды тяжелее бутана затрудняют образование гидратов.

Свойства гидратов. Проницаемость гидрата для молекул воды и газа незначительна: она ниже проницаемости водонасыщенных глин.

Изучение теплопроводности гидратов важно при разработке тепловых методов воздействия на гидратонасыщенные пласты для отбора газа из газогидратных залежей, при использовании методов ликвидации гидратов в технологических системах добычи, транспорта и переработки газов и т.д.

Экспериментальные определения теплопроводности гидратов газов, льда и воды при различных температурах и равновесных давлениях показали, что теплопроводность гидратов близка по величине к теплопроводности воды и мало зависит от температуры.

Теплопроводность льда при 0 С в четыре раза превышает теплопроводность гидрата и значительно возрастает с понижением температуры.