Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор8_нефть_2010.doc
Скачиваний:
311
Добавлен:
08.05.2019
Размер:
5.43 Mб
Скачать

Изменение давления по длине газопровода

Требуется определить давление в любой точке на расстоянии Х от начала газопровода. Записав по формуле (5.84) для двух участков газопровода (от его начала до т. Х и от т. Х до конца газопровода) массовые расходы газа и, учитывая постоянство массового расхода по длине газопровода, приравняем правые части уравнения, получим:

, (156)

откуда

. (157)

Отсюда следует, что давление по длине газопровода уменьшается по параболическому закону (рис.5.9). Из характера кривой вытекает, что по длине газопровода градиент давления постепенно увеличивается, т.е. гидравлический уклон не является постоянным.

В начале газопровода, когда давление и плотность газа высокие, а удельный объем газа ( ) мал, потери давления в газопроводе незначительны, т.е. градиенты давления малы. По мере удаления газа от начала трубопровода давление падает, а удельный объем газа увеличивается, что приводит к увеличению скорости движения газа и, соответственно, росту потерь давления на трение, пропорциональных квадрату скорости (уравнение Дарси-Вейсбаха).

5.11 Расчет сложного газопровода

Сборный коллектор газа большой протяженности (рис.5.8) представляет собой сложный газопровод: к нему подключено несколько газовых линий от групповых замерных установок. Данный коллектор необходимо прокладывать с изменяющимся диаметром. Диаметры отдельных участков определяют исходя из количества проходящего по ним газа.

Таким образом, при расчете сложных газопроводов их следует разбивать на отдельные участки, равные промежуткам между подключениями к данному газопроводу других газопроводов. Каждый такой участок рассчитывают как простой газопровод. Потеря давления на всем протяжении газопровода будет равна сумме потерь давлений на всех участках. Тогда давление в конечной точке газопровода можно определить по формуле:

, (5.104)

где Рк, Рн – соответственно конечное и начальное давления, н/м2;

vn – расходы газа на отдельных участках, млн. м3/сут;

ln – длины отдельных участков, м;

К – коэффициент, равный 0,0343/ ;

n – число участков;

dк – диаметр конечного участка.

6 Осложнения при эксплуатации промысловых трубопроводов

6.1. Внутренняя коррозия трубопроводов

Ежегодно на нефтепромысловых трубопроводах происходит около 50-70 тыс. отказов. 90% отказов являются следствием коррозионных повреждений. Из общего числа аварий 50-55% приходится на долю систем нефтесбора и 30-35% - на долю коммуникаций поддержания пластового давления.

42% труб не выдерживают пятилетней эксплуатации, а 17% - даже двух лет. На ежегодную замену нефтепромысловых сетей расходуется 7-8 тыс. км труб или 400-500 тыс. тонн стали.

6.1.1. Теоретические основы электрохимической коррозии металлов

Коррозия – это разрушение металлов в результате химического или электрохимического воздействия окружающей среды, это окислительно-восстановительный гетерогенный процесс, происходящий на поверхности раздела фаз.

Хотя механизм коррозии в разных условиях различен, по виду разрушения поверхности металла различают:

  1. Равномерную или общую коррозию, т.е. равномерно распределенную по поверхности металла. Пример: ржавление железа, потускнение серебра.

  2. Местную или локальную коррозию, т.е. сосредоточенную на отдельных участках поверхности. Местная коррозия бывает различных видов:

  • в виде пятен – поражение распространяется сравнительно неглубоко и занимает относительно большие участки поверхности;

  • в виде язв – глубокие поражения локализуются на небольших учасках поверхности;

  • в виде точек (питтинговая) - размеры еще меньше язвенных разъеданий.

  1. Межкристаллитную коррозию – характеризующуюся разрушением металла по границам кристаллитов (зерен металла). Процесс протекает быстро, глубоко и вызывает катастрофическое разрушение.

  2. Избирательную коррозию – избирательно растворяется один или несколько компонентов сплава, после чего остается пористый остаток, который сохраняет первоначальную форму и кажется неповрежденным.

  3. Коррозионное растрескивание происходит, если металл подвергается постоянному растягивающему напряжению в коррозионной среде. КР может быть вызвано абсорбцией водорода, образовавшегося в процессе коррозии.

По механизму протекания различают химическую и электрохимическую коррозию.

Химическая коррозия характерна для сред не проводящих электрический ток.

Коррозия стали в водной среде происходит вследствие протекания электрохимических реакций, т.е. реакций сопровождающихся протеканием электрического тока.

Электрохимическая коррозия возникает в результате работы множества макро- или микрогальванопар в металле, соприкасающемся с электролитом.

Причины возникновения гальванических пар в металлах:

  • соприкосновение двух разнородных металлов;

  • наличие в металле примесей;

  • наличие участков с различным кристаллическим строением;

  • образование пор в окисной пленке;

  • наличие участков с различной механической нагрузкой;

  • наличие участков с неравномерным доступом активных компонентов внешней среды, например, воздуха.

Таким образом образуются гальванические элементы, микропары, то есть образуются анодные и катодные участки. Анодом является металл с более высоким отрицательным потенциалом, катодом является металл с меньшим потенциалом. Между ними возникает электрический ток.

Процесс коррозии можно представить следующим образом.

На аноде: (реакция окисления)

Fe - 2 e  Fe 2+ (6.1)

На анодных участках атомы железа переходят в раствор в виде гидратированных катионов Fe 2+, то есть происходит анодное растворение металла и процесс коррозии распространяется вглубь металла.

Оставшиеся свободные электроны перемещаются по металлу к катодным участкам.

На катоде: (реакция восстановления)

2 Н+ + 2 e  2 Н aдс. (6.2)

При рН < 4,3 происходит разряд всегда присутствующих в воде ионов водорода и образование атомов водорода с последующим образованием молекулярного водорода:

Н + Н  Н2 . (6.3)

При рН > 4,3 доминирует взаимодействие электронов с кислородом, растворенным в воде:

О2 + 2 Н2О + 4 е  4 ОН-- (6.4)

Катионы Fe 2+ и ионы ОН-- взаимодействуют с образованием закиси Fe:

Fe2+ + 2 OH-- Fe(OH)2. (6.5)

Если в воде достаточно свободного кислорода, закись Fe может окислиться до гидрата окиси Fe:

4Fe(OH)2 + О2 + 2 Н2О  4Fe(OH)3 , (6.6)

который выпадает в виде осадка.

Итак, в результате протекания электрического тока анод разрушается: частицы металла в виде ионов Fe 2+ переходят в воду или эмульсионный поток. Анод, разрушаясь, образует в трубе свищ.