Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ещё шпоры КСЕ.doc
Скачиваний:
11
Добавлен:
01.05.2019
Размер:
390.14 Кб
Скачать

30. Типы физических взаимодействий. Проблема «суперсилы».

Элементарные частицы участвуют во всех видах известных взаимодействий. Различают 4 вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. При определенных условиях сильное взаимодействии е очень прочно связывает частицы, в результате чего образуются материальные системы с высокой энергией связи – атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон – квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие – самое слабое, не учитываемое в теории элементарных частиц. Однако на ультрамалых расстояниях и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. По времени различных превращений можно судить о силе связанных с ними взаимодействий.

Все 4 взаимодействия необходимы и достаточны для построения разнообразного мира.

Современная физика пришла к выводу, что все 4 фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия – суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все 4 взаимодействия объединяются в одно.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

16. Химия о составе вещества. Сущность структурной химии.

Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р.Бойль. Первым был открыт химический элемент фосфор в 1669 году, потом кобальт, никель и другие. Открытие французским химиком А.Л.Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне). Лавуазье впервые систематизировал химические элементы на базе имевшихся в 18 веке знаний. Эта систематизация оказалась ошибочной и в дальнейшем была усовершенствована Д.И.Менделеевым.

В периодической системе Д.И.Менделеева насчитывалось 62 элемента, в 1930-е годы она заканчивалась ураном. В 1999 году было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Вопросы, связанные с химическими соединениями, длительное время не вызывали споров в среде химиков. Казалось очевидным, что именно относится к химическим соединениям, а что – к простым телам и смесям. Однако применение в последнее время физических методов исследования вещества позволило выявить физическую природу химии, т.е. внутренние силы, которые объединяют атомы в молекулы, представляющие собой прочную квантово-механическую целостность. Такими силами оказались химические связи, проявляющие волновые свойства валентных электронов.

В результате химических и физических открытий претерпело изменение классическое определение молекулы. Молекула понимается как наименьшая частица вещества, которая в состоянии определять его свойства и в то же время может существовать самостоятельно.

С открытием физиками природы химизма как обменного взаимодействия электронов химики совершенно по-другому стали рассматривать химическое соединение. Химическое соединение – понятие более широкое, чем «сложное вещество», которое должно состоять из двух и более разных химических элементов. Химическое соединение может состоять и из одного элемента.

Структурная химия представляет собой уровень развития химических знаний, на котором доминирует понятие «структура», т.е. структура молекулы, макромолекулы, монокристалла. «Структура – это устойчивая упорядоченность качественно неизменной системы, каковой является молекула».

С возникновением структурной химии у химической науки появились неизвестные ранее возможности целенаправленного качественного влияния на преобразование вещества. Еще в 1857 году немецкий физик Ф.А.Кекуле показал, что углерод четырехвалентен, и это дает возможность присоединить к нему до четырех элементов одновалентного водорода. Азот может присоединить до трех одновалентных элементов, кислород – до двух. Эта схема натолкнула исследователей на понимание механизма получения новых химических соединений.

В 60-80-е годы прошлого века появился термин «органический синтез». Из аммиака и каменноугольной смолы были получены анилиновые красители, а позднее – взрывчатые вещества и лекарственные препараты. Структурная химия дала повод для оптимистических заявлений, что химики могут все.

Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии. Многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие расходы в виде побочных продуктов. Вследствие этого их нельзя было использовать в промышленном масштабе.

Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойства, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации. Поэтому такие кристаллы выращивают в космосе, на орбитальных станциях.