Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТАТИЧЕСКАЯ БИОХИМИЯ.doc
Скачиваний:
13
Добавлен:
30.04.2019
Размер:
1.52 Mб
Скачать

Нейтральные жиры

К нейтральным жирам относится группа липидов, состоящих из трехатом­ного спирта — глицерина и трех остатков жирных кислот, поэтому они на­зываются триглицеридами.

В состав нейтральных жиров могут входить одинаковые жирные кислоты, например пальмитиновая. В таком случае образуется сложный эфир - триглицерид трипальмитин. Это простые жиры. Если жиры содержат остатки разных жирных кислот, то образуются смешанные жиры.

В данном уравнении реакции показаны обратимые процессы синтеза (верхняя стрелка) и гидролиза (нижняя) жира.

Природные жиры отличаются большим разнообразием входящих в их состав жирных кислот, их различным расположением в молекуле и степенью ненасыщенности. Потенциально могут существовать миллионы изомеров триглицеридов.

Жирные кислоты — органические кислоты с длинной углеводородной цепью (радикалом R), содержащей от 4 до 24 и более атомов углерода, и одной карбоксильной группой. Общая формула жирных кислот имеет вид

СnН2n+1СООН, или R-COOH.

Для многих жирных кислот характерно наличие четного числа атомов углерода, что обусловлено, по-видимому, их синтезом путем прибавления двууглеродных звеньев к растущей углеводородной цепи.

В состав жиров организма человека чаще всего входят жирные кислоты с 16 или 18 атомами углерода, которые называются высшими жирны­ми кислотами. Высшие жирные кислоты разделяются на насыщенные предельные) и ненасыщенные (непредельные)

Насыщенные кислоты

Ненасыщенные кислоты

С3Н7СООН Масляная (бутановая)

С17Н33СООН Олеиновая

С11Н23СООН Лауриновая

С17Н31СООН Линолевая

С15Н31СООН Пальмитиновая

С17Н29СООН Линоленовая

С17Н35СООН Стеариновая

С19Р31СООН Арахидоновая

В насыщенных жирных кислотах все свободные связи углеродных атомов заполнены водородом. Такие жирные кислоты не имеют двойных или тройных связей в углеродной цепи. Ненасыщенные жирные кислоты имеют в углеродной цепи двойные связи (-С=С-), первая из которых возникает между девятым и десятым атомами углерода от карбоксильной группы. Жирные кислоты с тройными связями встречаются редко. Жирные кислоты, содержащие две и более двойных связей, называются полинена­сыщенными.

С увеличением числа углеродных атомов в молекулах жирных кислот температура их плавления увеличивается. Жирные кислоты могут быть твердыми веществами (например, стеариновая) либо жидкими (например, линолевая, арахидоновая); они не растворимы в воде и весьма слабо рас­творимы в спирте.

Твердые жиры — это жиры животного происхождения, за исключением рыбьего жира. Жидкие жиры — это растительные масла, за исключением кокосового и пальмового масел, которые затвердевают при охлаждении. В организме животных и у растений ненасыщенных жирных кислот в два раза больше, чем насыщенных.

Ненасыщенные жирные кислоты более реакционноспособны, чем на­сыщенные. Они легко присоединяют два атома водорода по месту двойных связей, превращаясь в насыщенные:

Этот процесс называется гидрогенизацией. Вещества, подвергнутые гидрогенизации, изменяют свои свойства. Например, растительные масла превращаются в твердый жир. Реакция гидрогенизации широко использу­ется для получения твердого пищевого жира — маргарина из жидких рас­тительных масел.

Особое значение для человека имеют полиненасыщенные жирные кислоты. В организме они не синтезируются. При их недостатке или отсутствии в пи­ще нарушается обмен жиров, в частности холестерина, наблюдаются па­тологические изменения в печени, коже, функции тромбоцитов. Поэтому такие ненасыщенные жирные кислоты, как линоленовая и линолевая, — незаменимые факторы питания. Кроме того, они способствуют выходу из печени жиров, которые синтезируются в ней, и предупреждают ее ожи­рение. Такое действие ненасыщенных жирных кислот называется липотропным эффектом. Ненасыщенные жирные кислоты служат предшествен­никами синтеза биологически активных веществ — простагландинов. Су­точная потребность человека в полиненасыщенных кислотах в норме сос­тавляет примерно 15 г.

Нейтральные жиры накапливаются в жировых клетках (адипоцитах), под кожей, в молочных железах, жировых капсулах вокруг внутренних органов брюшной полости; незначительное их количество находится в ске¬летных мышцах. Образование и накопление нейтральных жиров в жировых тканях называется депонированием. Триглицериды составляют основу резервных жиров, которые являются энергетическим запасом организма и используются при голодании, недостаточном употреблении жиров, длительных физических нагрузках.

Нейтральные жиры входят также в состав клеточных мембран, сложных белков протоплазмы и называются протоплазматическими. Протоплазматические жиры не используются в качестве энергетического источника даже при истощении организма, так как выполняют структурную функцию. Их количество и химический состав постоянны и не зависят от состава пищи, тогда как состав резервных жиров постоянно изменяется. У человека протоплазматические жиры составляют около 25 % всей массы жира в организме (2—3 кг).

В различных клетках организма, особенно в жировой ткани, постоянно протекают ферментативные реакции биосинтеза и распада нейтральных жиров:

При гидролизе жиров в организме образуются глицерин и свобод­ные жирные кислоты. Этот процесс катализируется ферментами липаза­ми. Процесс гидролиза жиров в тканях организма называется липолизом. Скорость липолиза значительно увеличивается при физических нагрузках на выносливость, а активность липаз повышается в процессе тренировки.

Если реакцию распада жира проводить в присутствии щелочей (NaOH, КОН), то образуются натриевые или калиевые соли жирных кислот, кото­рые называются мылами, а сама реакция — омылением. Эта химическая реакция лежит в основе производства мыла из различ­ных жиров и их смесей.

Фосфолипиды

Фосфолипиды — это жироподобные вещества, состоящие из спирта (чаще глицерина), двух остатков жирных кислот, остатка фосфорной кислоты и азотсодержащего вещества (аминоспирта — холина или коламина).

Если в молекулы фосфолипида входит холин, они называются лецитины, а если коламин – кефалины.

Холин Коламин

Альфа-лецитин Альфа-кефалин

Строение бета-изомеров отличается тем, что остатки фосфорной кислоты и аминоспирта расположены у второго (среднего) углеродного атома глицерина.

Фосфатиды, особенно лецитин в большом количестве содержатся в желтке яиц. В организме человека они широко распространены в нервной ткани. Фосфолипиды играют важную биологическую роль, являясь структур­ным компонентом всех клеточных мембран, поставщиками холина, необ­ходимого для образования нейропередатчика — ацетилхолина. От фосфолипидов зависят такие свойства мембран, как проницаемость, рецепторная функция, каталитическая активность мембраносвязанных ферментов.

Фосфолипиды доминируют в мембранах животной клетки, они содержатся также во многих ее субклеточных частицах.

Биологическая роль фосфолипидов в организме значительна и разнообразна. В качестве непременного компонента биологических мембран фофолипиды принимают участие в их барьерной, транс­портной, рецепторной функциях, в разделении внутреннего прост­ранства клетки на клеточные органеллы — «цистерны», отсеки. Эти функции мембран относят в настоящее время к важнейшим регуляторным механизмам жизнедеятельности клеток. Присутствие фосфолипидов в мембранах необходимо и для функционирования мембранносвязанных ферментных систем.

СТЕРОИДЫ

С тероиды относятся к неомыляемым липидам. По химической природе стероиды - производные циклопентанпергидрофенантрена. Их разделяют на стерины и стериды. Стерины — высокомолеку­лярные циклические спирты, имеющие в составе молекулы ядро циклопентанпергидрофенантрена.

В состав различных тканей входят также стериды — сложные эфиры, образованные стеринами и жирными кислотами. Стерины и их производные выполняют разнообразные функции в орга­низме. Большое биологическое значение в животном организме имеет холестерин. Нарушение его обмена может повлечь патологические изменения сосудов — атеросклероз. Холестерин служит биологиче­ским предшественником желчных кислот, стероидных гормонов. Желчные кислоты имеют большое значение в процессе расщепле­ния липидов в кишечнике. Стероидные гормоны регулируют мно­гочисленные процессы обмена веществ.

БЕЛКИ

Наиболее важными соединениями каждого организма являются белки. Они обязательно обнаруживаются во всех клетках организма, в большинстве из них на долю белка приходится более поло­вины сухого остатка. Все основные проявления жизни связаны с белками. «Жизнь, — писал Ф. Энгельс, — есть способ существования белковых тел... Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и проявления жизни».

Белки - высокомолекулярные азотосодержащие органические соединения, состоящие из остатков аминокислот. В составе неко­торых белков наряду с аминокислотами обнаруживают и другие соединения.

Для живых организмов характерно большое разнообразие белков, которые составляют основу структуры организма и обеспечи­вают множество его функций. Полагают, что в природе существу­ет примерно 1010—1012 различных белков, что и объясняет большое многообразие живых организмов. В одноклеточных орга­низмах насчитывают около 3000 различных белков, а в организме человека — около 5000000.

Несмотря на сложность строения и многообразие, все белки построены из сравнительно простых структурных элементов — аминокислот. Белки представляют собой полимерные молекулы, в состав которых входит 20 различных аминокислот. Изменение числа аминокислотных остатков и последовательности их распо­ложения в молекуле белка обеспечивает возможность образова­ния громадного количества белков, отличающихся своими физико-химическими свойствами, структурной или функциональной ролью в организме.

Для любого организма белки играют решающую роль во всех процессах жизнедеятельности. С ними связа­ны такие свойства живого организма, как раздражи­мость, сократимость, пищеварение, способность к росту, размножению, движению. Следовательно, бел­ки являются главными носителями жизни. В неживой природе соединения, подобные белкам, не встреча­ются.

Химический состав и биологическая роль белков

Белки — высокомолекулярные азотсодержащие ве­щества, при гидролизе которых образуются амино­кислоты. Иногда белки называют протеинами (от греч. proteus — первый, главный), определяя тем са­мым их важнейшую роль в жизнедеятельности всех организмов. Белок в организме человека составляет в среднем 45 % сухой массы тела (12—14 кг). Содержа­ние его в отдельных тканях различное. Наибольшее количество белка содержится в мышцах, костях, коже, пищеварительном тракте и других плот­ных тканях.

Суточная потребность в белке взрослого челове­ка, не занимающегося спортом, составляет в среднем 1,3 г на 1 кг массы тела или около 80 г. При больших энерготратах потребность в них увеличивается при­мерно на 10 г на каждые 2100 кДж увеличивающихся затрат энергии.

Белки поступают в организм преимущественно с пищей животного происхождения. В растениях бел­ков содержится значительно меньше: в овощах и фруктах — всего 0,3—2,0 % массы свежей ткани; наи­большее количество белков — в бобовых — 20—30 %, злаках — 10—13 и грибах — 3—6 %.

Элементарный состав белков. Важнейшими хи­мическими элементами всех белков являются углерод (50—55 %), кислород (21—23 %), водород (6,5— 7,3%), азот (15—18%), сера (0,3—2,5%). В составе белков обнаружены также фосфор, железо, йод, медь, марганец и другие химические элементы.

Содержание белкав в органах и тканях человека

Органы и ткани

Содержание белка, %

от сухой ткани

от общего белка тела

Скелетные мышцы

80

34,7

Кожа

60

11,5

Кости (твердые ткани)

20

18,7

Пищеварительный тракт

63

1,8

Мозг и нервная ткань

45

2,0

Печень

57

3,6

Сердце

60

0,7

Легкие

82

3,7

Селезенка

84

0,2

Почки

72

0,5

Поджелудочная железа

47

0,1

Жировая ткань

14

6,4

Остальные ткани:

жидкие

85

1,4

плотные

54

14,6

Все тело

45

100,0

Количественный и качественный состав отдельных белков различен. Все белки содержат постоянное количество азота, равное в среднем 16%. Поэтому по количеству азота, поступившего с пищей (процентное содержание азота пищи умножают на пересчетный коэффициент 6,25), оп­ределяют потребление белка организмом.

Аминокислотный состав. Белки состоят из аминокислот. Известно около 200 различных аминокислот, однако для построения белков в живот­ных и растительных тканях используются только 20. Называются эти ами­нокислоты основными.

Наряду с основными в состав отдельных белков входят другие амино­кислоты — неосновные. Каждая такая аминокислота происходит от одной из 20 основных аминокислот. Например, 4-гидроксипролин и 5-дигидро-ксилизин являются производными пролина и лизина и входят в состав кол­лагена — белка соединительной ткани:

Простые и сложные белки. В зависимости от химического состава белки делятся на простые и сложные. Простые белки состоят только из аминокислот, среди которых есть растворимые в воде (гистоны, альбуми­ны, фибриноген) и не растворимые (глобулины, миозин, коллаген, осеин, кератин). Сложные белки состоят из белковой и небелковой частей. Небел­ковая часть может быть представлена углеводами, нуклеиновыми кислота­ми, липидами, фосфорной кислотой, окрашенными (хромо-) веществами. В зависимости от природы небелковой части сложные белки делятся на гликопротеиды, нуклеопротеиды, липопротеиды, фосфопротеиды, хромопротеиды. Все они выполняют разнообразные функции в организме.

Биологические функции белков

  • Структурная (пластическая). В комплексе с липидами белки составляют структуру всех клеточных мембран и основу цитоплазмы клеток. Струк­турной основой соединительной ткани являются такие белки, как коллаген (входит в состав хрящей и сухожилий), кератин (входит в состав кожи), эластин (входит в состав связок и стенок сосудов).

  • Каталитическая. Эту функцию выполняют специфические белки-фер­менты, регулирующие обмен веществ и энергии в организме. Если ферменты не работают в клетке, то биохимические реакции не про­текают и живая клетка может погибнуть.

  • Сократительная. Все виды сокращения и движения скелетных мышц, миокарда и других сокращающихся тканей обеспечивают сократительные белки актин и миозин.

  • Транспортная. Белки способны связывать и транспортировать с током крови или через клеточные мембраны отдельные молекулы и ионы. Напри­мер, гемоглобин эритроцитов крови переносит кислород от легких к тканям и углекислый газ — от тканей к легким; миоглобин мышц переносит кисло­ род в мышечной ткани к местам его использования. Отдельные белки кро­ ви транспортируют жирные кислоты, липиды, железо, некоторые гормоны.

  • Защитная. Белки иммунной системы гаммаглобулины "узнают" и связывают чужеродные вещества, поступающие в организм, защищая тем самым его от вирусов, бактерий и клеток других организмов. Защитную функцию выполняет также белок интерферон. Белки плазмы крови фибри­ноген и тромбин участвуют в процессах свертывания крови, предотвращая кровопотери при ранениях.

  • Гормональная, или регуляторная. Высокоспецифические белки-гор­моны регулируют обмен веществ.

  • Рецепторная. Многие белки являются рецепторами гормонов, нейро- медиаторов, других биологически активных веществ. Они осуществляют из­бирательное узнавание, связывание и передачу их регуляторного действия.

  • Передача наследственной информации. Белки входят в состав хро­мосом и участвуют в воспроизведении генетической информации, в регу­ляции процессов роста и размножения.

  • Опорная. Упругость и прочность костей скелета, кожи, сухожилий обеспечивают преимущественно белки коллаген и эластин.

  • Энергетическая. Около 10—15% энергопотребления организма обеспечивается белками. При окислении 1 г белков выделяется 17 кДж (4,1 ккал) энергии.

Аминокислоты

При нагревании белков до высоких температур с крепкими кислотами, щелочами, а также под действием ферментов белковые молекулы расщепляются на более . простые соединения. На основании изучения конечных продуктов гидролиза белков было найдено, что в состав молекулы входит до 20 различных аминокислот. Аминокислотами называют соединения, содержащие од­новременно аминные и карбоксильные группы. Молекулы большин­ства природных аминокислот имеют общую структуру, в которой ами­ногруппа находится в альфа-положении по отношению к карбоксильной:

Следовательно, аминогруппа присоединена к ближайшему от карбо­ксила углеродному атому. Некоторые аминокислоты имеют амино­группу в бета- или -гамма-положении.

Глицин Аланин Цистеин

А минокислоты являются амфотерными электролитами, т. е. обладают свойствами кислот и оснований и могут реаги­ровать как с основаниями, так и кислотами: