Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник цитологии.doc
Скачиваний:
20
Добавлен:
17.04.2019
Размер:
1.25 Mб
Скачать

5.Эндоцитоз. Экзоцитоз.

Эндо- и экзоцитоз. Для некоторых веществ, которые поступают в клетку или должны быть выведены из нее, транспортные каналы отсутствуют; к таким веществам относятся, например, белки и холестерол. Они могут проходить через плазматическую мембрану в везикулах, или пузырьках, с помощью эндо- и экзоцитоза. При экзоцитозе определенные органеллы (см. ниже) формируют везикулы, заполненные веществом, которое необходимо вывести из клетки, например гормонами или ферментами внеклеточного действия. Когда такие везикулы достигают плазматической мембраны, их липидная мембрана сливается с ней, давая таким образом возможность содержимому выйти во внешнюю среду. При противоположном процессе - эндоцитозе -плазматическая мембрана инвагинирует, образуя ямку, которая затем углубляется и замыкается, формируя внутриклеточную везикулу, заполненную внеклеточной жидкостью и некоторыми макромолекулами. Чтобы обеспечить это слияние мембран и замыкание везикулы, сократительные элементы цитоскелета действуют совместно с самими мембранами.При эндоцитозе не всегда происходит просто захват внеклеточной среды в клетку. В клеточной мембране содержатся часто организованные в специализированные группы специфические рецепторы к макромолекулам, таким, как инсулин или антигены. После того как эти макромолекулы свяжутся со своими рецепторами, в окружающем рецептор участке мембраны происходит эндоцитоз, и макромолекула избирательно транспортируется в клетку.

Экзоцитоз (от греч. Έξω — внешний и κύτος — клетка) — у эукариот клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом.

У прокариот везикулярный механизм экзоцитоза не встречается, у них экзоцитозом называют встраивание белков в клеточную мембрану (или в наружную мембрану у грамотрицательных бактерий), выделение белков из клетки во внешнюю среду или в периплазматическое пространство.

Экзоцитоз может выполнять три основные задачи:

  • доставка на клеточную мембрану липидов, необходимого для роста клетки;

  • высвобождение различных соединений из клетки, например, токсичных продуктов метаболизма или сигнальных молекул (гормонов или нейромедиаторов);

  • доставка на клеточную мембрану функциональных мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки.

Эндоцитоз. Механизмы эндоцитоза.

Транспорт ионов и макромолекулярных соединений через плазмолемму происходит разными путями. Растворенные в жидкой среде вещества проникают через клеточную мембрану либо сами — без переносчиков (или носителей), либо с помощью переносчиков, или носителей. Транспорт без носителей называется пассивным (непосредственным транспортом) и осуществляется через каналы мембран, т. е. в тех белоксодержащих участках, которые проницаемы для малых молекул (воды, мочевины, ионов) и действуют подобно молекулярным ситам, а также через липидную фазу мембраны. В последнем случае липидная фаза служит растворителем для ряда веществ (простые и сложные эфиры, жирные кислоты и др.).

Однако большинство веществ проникают через плазмолемму с помощью транспортных систем, или переносчиков (носителей). Это специфические мембранные белки группы интегральных, или функциональные комплексы липопротеидов, которые связываются и трансмембранно переносят молекулы субстратов. Простейшим примером транспорта с помощью носителя является облегченная (опосредованная) диффузия. В этом процессе носитель облегчает перенос какого-либо вещества через мембрану без затраты энергии.

Для осуществления процесса активного транспорта нужен источник энергии, которым обычно является аденозинтрифосфат (АТФ). Активный транспорт может служить для переноса одного вещества в одном направлении, либо для переноса двух веществ в противоположных (или в том же самом) направлениях. В последнем случае перенос веществ называется сопряженным активным транспортом. В отличие от транспорта низкомолекулярных соединений, макромолекулярные соединения транспортируются с помощью процессов эндоцитоза (в клетку) и экзоцитоза (из клетки).

Эндоцитоз(англ. endocytosis)  — это транспорт макромолекул через плазмолемму. Соответственно выделяют пиноцитоз (захват и транспорт клеткой жидкости или растворенных в жидкости соединений) и фагоцитоз (захват и транспорт твердых частиц). Эндоцитоз бывает неспецифический и специфический. Термин был предложен в 1963 году бельгийским цитологом Кристианом де Дювом

Неспецифический эндоцитоз осуществляется без участия рецепторных белков плазмолеммы. Первым этапом неспецифического эндоцитоза в случае транспорта твердых частиц является прилипание частиц к внешней поверхности. Второй этап — погружение частиц в клетку путем инвагинации плазмолеммы. Прилипание и погружение происходят в тех участках плазмолеммы, которые свободны от холестерина, т. е. наименее жесткие.. После отшнуровки участка плазмолеммы с твердыми частицами образуется внутриклеточный пузырек. Перемещение его в гиалоплазме осуществляется с помощью элементов цитоскелета. Дальнейшая судьба пузырька может быть различна. Наиболее часто он подвергаются процессу внутриклеточного переваривания: в которой под действием ферментов лизосом происходит химическое расщепление макромолекул до мономерных соединений.

Процесс пиноцитоза подразделяется на микро- и макропиноцитоз. При микропиноцитозе начальным этапом является образование инвагинации плазмолеммы, в которой находится часть жидкой среды. Это небольшие пузырьки которые по мере продвижения по цитоплазме могут сливаться в более крупные образования. Погружение капли жидкости при микропиноцитозе происходит не в случайных участках плазмолеммы, а в тех областях где отсутствует холестерин, что делает мембрану податливой к инвагинации. Когда от мембраны отшнуровывается пиносома (пиноцитозный пузырек, или везикула) по периферии она имеет слой белка, в связи с чем пузырек именуют окаймленным.

  • Макропиноцитоз отличается от микропиноцитоза тем, что с помощью довольно длинных выростов плазмолеммы клетка активно захватывает фрагменты жидкой среды. После смыкания конца выроста с соседним участком плазмолеммы образуется крупная пиноцитозная вакуоль. Таким образом, при макропиноцитозе процесс поглощения клеткой жидкости происходит более интенсивно.

Различные типы эндоцитоза: фагоцитоз, пиноцитоз и рецептор-опосредованный эндоцитоз.

  • Фагоцитоз (поедание клеткой) — процесс поглощения клеткой твёрдых объектов, таких как клетки эукариот, бактерии, вирусы, остатки мёртвых клеток и т. п. Вокруг поглощаемого объекта образуется большая внутриклеточная вакуоль (фагосома). Размер фагосом — от 250 нм и больше. Путем слияния фагосомы с первичной лизосомой образуется вторичная лизосома. Продукты расщепления (аминокислоты, моносахариды и прочие полезные вещества) транспортируются затем через лизосомную мембрану в цитоплазму клетки. Фагоцитоз распространен очень широко. У высокоорганизованных животных и человека процесс фагоцитоза играет защитную роль. Фагоцитарная деятельность лейкоцитов и макрофагов имеет огромное значение в защите организма от попадающих в него патогенных микробов и других нежелательных частиц. Фагоцитоз впервые описал русский ученый И.И. Мечников.

  • Пиноцитоз (питьё клеткой) — процесс поглощения клеткой жидкой фазы из окружающей среды, содержащей растворимые вещества, включая крупные молекулы (белки, полисахариды и др.). При пиноцитозе от мембраны отшнуровываются внутрь клетки небольшие пузырьки — эндосомы. Они меньше фагосом (их размер до 150 нм) и обычно не содержат крупных частиц. После образования эндосомы к ней подходит первичная лизосома, и эти два мембранных пузырька сливаются. Образовавшаяся органелла носит название вторичной лизосомы. Процесс пиноцитоза постоянно осуществляют все эукариотическме клетки.

6. Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом - сигнальных веществ), передаваемых через межклеточное вещество.

Содержание

  • 1 Строение межклеточных соединений

  • 2 Функции межклеточных соединений

  • 3 Типы межклеточных соединений

    • 3.1 Плазмодесмы

    • 3.2 Простое межклеточное соединение

    • 3.3 Плотное соединение (запирающая зона)

      • 3.3.1 Зона замыкания

      • 3.3.2 Зона слипания (промежуточный контакт)

    • 3.4 Десмосома (пятно сцепления, липкое соединение)

    • 3.5 Нексус (щелевой контакт)

    • 3.6 Синапс (синаптическое соединение)

Строение межклеточных соединений

В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителий, мышечная ткань и пр.) между мембранами контактирующих клеток формируются связи – межклеточные контакты. Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых — трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные "скелетные" белки - соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca2+.

Функции межклеточных соединений

Межклеточные соединения возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов (межклеточное взаимодействие), а также для механического скрепления клеток друг с другом.

Через щелевые контакты могут передаваться электрические сигналы. Клетки органов и тканей вырабатывают ряд химических веществ, действующих на другие клетки (в том числе через межклеточные контакты) и вызывающих изменения в работе цитоскелета, в интенсивности обмена веществ и процессе синтеза клеткой белков.

Типы межклеточных соединений

Плазмодесмы

Микроскопические цитоплазматические мостики, соединяющие соседние клетки растений. Основная статья: Плазмодесмы

Простое межклеточное соединение

При простом межклеточном соединении оболочки клеток сближены на расстояние 15 – 20 нм. Это соединение занимает наиболее обширные участки соприкасающихся клеток. Посредством простых соединений осуществляется слабая механическая связь, не препятствующая транспорту веществ в межклеточных пространствах. Разновидностью простого соединения является контакт типа «замок», когда билипидные мембраны соседних клеток вместе с участком цитоплазмы вдавливаются друг в друга, чем достигается большая поверхность соприкосновения и более прочная механическая связь.

Плотное соединение (запирающая зона)

В плотном соединении клеточные мембраны максимально сближены, здесь фактически происходит их слияние. Роль плотного соединения заключается в механическом сцеплении клеток и препятствии транспорту веществ по межклеточным пространствам. Эта область непроницаема для макромолекул и ионов, она ограждает межклеточные щели от внешней среды. Плотные соединения обычно образуются между эпителиальными клетками в тех органах (желудке, кишечнике и пр.), где эпителий ограничивает содержимое этих органов (желудочный сок, кишечный сок). В этих участках плотные контакты охватывают по периметру каждую клетку, межмембранные пространства отсутствуют, а соседние клеточные оболочки слиты в одну. Если же плотное сцепление происходит на ограниченном участке, то образуется пятно слипания (десмосома).Частными случаями плотного соединения являются зоны замыкания и слипания.

Зона замыкания

В зоне замыкания две соседние мембраны сливаются своими наружными слоями, эта зона непроницаема для макромолекул и ионов.

Зона слипания (промежуточный контакт)

В зоне слипания мембраны разделены щелью в 10-20 нм, заполненной плотным веществом (белковой природы).

Десмосома (пятно сцепления, липкое соединение)

Десмосома представляет собой небольшую площадку, иногда слоистого вида, диаметром до 0,5 мкм. Их функциональная роль заключается главным образом в механической связи между клетками. Существуют 3 типа десмосом – точечные, опоясывающие и полудесмосомы. Десмосомой называется образованное клетками соединение, прочно склеивающее клетки. Если они образуются между клетками и внеклеточным матриксом, то они называются полудесмосомами. Количество десмосом на одной клетке может достигать 2000. Такие контакты встречаются между клетками, которые могут подвергаться трению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют остов цитоплазмы, обладающий большой прочностью на разрыв. Таким образом, через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть по всей ткани. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы – десминовые.

] Нексус (щелевой контакт)

Щелевые контакты

Нексус представляет собой ограниченный участок контакта двух клеточных мембран диаметром 0,5 – 3 мкм с расстоянием между мембранами 2-3 нм. Обе эти мембраны пронизаны белковыми молекулами коннексонами, содержащими гидрофильные каналы. Через эти каналы осуществляется обмен ионами и микромолекулами соседних клеток. Поэтому нексусы называют также проводящими соединениями. Их функциональная роль заключается в переносе ионов и мелких молекул от клетки к клетке, минуя межклеточное пространство. Этот тип соединения встречается во всех группах тканей.

Синапс (синаптическое соединение)

Синапсы являются особыми формами межклеточных соединений. Они характерны для нервной ткани и встречаются между нейронами (межнейронные синапсы) или между нейроном и клеткой-мишенью (нервно-мышечные синапсы и пр.). Синапсы – участки контакта двух клеток, специализированных для односторонней передачи возбуждения или торможения от одной клетки к другой. Их функция – именно передача нервного импульса с нейрона на другую нервную клетку или клетку-мишень.