Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-24.doc
Скачиваний:
46
Добавлен:
20.12.2018
Размер:
1.2 Mб
Скачать

18. Трансляция сетевых адресов. Технология nat

NAT реализует механизм взаимодействия внутренней и внешней сети на основе динамической подмены IPv4 частных адресов на публичные.

Причины использования NAT

  1. дефицит публичных IPv4 адресов

  2. безопасность внутренней сети

Традиционная технология NAT организует сеансы связи исходящие из локальной сети.

Идея NAT технологии

На марщрутизаторе связывающем внутреннюю и внешнюю сети устанавливается программный модуль поддержки NAT.

Такое NAT устройство динамически отображает набор частных адресов на набор публичных IPv4 адресов.

Виды технологии NAT

1)Базовая трансляция сетевых адресов

BasicNAT применяется когда количество локальных узлов=публичному количеству адресов IPv4.

Табл NATR2

порт

частный

Публичный

1012

10.0.1.4

180.230.25.1

3128

10.0.1.5

180.230.25.2

Табл NATR3

Частн

Публичн

10.0.1.4

185.127.125.2

….

….

  1. Протокольные стеки ipx/spx, NetBios/smb, sna

Стек SNA

SNA (Systems Network Architecture) является патентованной архитектурой компании IBM, созданной в 1974 году в соответствии с иерархической моделью построения сетей, которой в то время придерживалась IBM. В эту иерархию включились мэйнфреймы (хост), коммуникационные контроллеры, кластерные (групповые) контроллеры и терминалы [4.8].

Уровневая архитектура и основные протоколы стека SNA в сопоставлении с архитектурой ISO/OSI представлены на рис. 4.9, 4.10. Как видно, модель SNA напоминает модель ISO/OSI. Но функции в ней сгруппированы по-другому.

Верхний уровень службы транзакций (Transaction Services) обеспечивает средства приложений для распределенной обработки и управления сетью. К прикладным протоколам относятся:

  • DIA (Document Interchange Architecture) - определяет стандарты обмена документами между разнородными вычислительными системами; координирует передачу файлов, поиск документов и их хранение;

  • SNADS (SNA Distributed Service) - управляет распространением документов и сообщений (инфраструктура для распространения электронной почты);

  • DDM (Distributed Data Management) - обеспечивает прозрачный удаленный доступ к файлам за счет механизма перенаправления запросов.

Уровень службы представления данных (Presentation Services) выполняет часть функций шестого уровня модели ISO/OSI (трансляция данных) и частично седьмого по административному управлению совместного использования ресурсов и синхронизации операций.

Уровень управления потоком данных (Data Flow Control) по своим функциям в основном соответствует сеансовому уровню модели ISO/OSI. Он управляет диалогами, обработкой запросов и ответов, групповых сообщений и прерыванием потока данных по запросу.

Уровень управления передачей (Transmission Control) выполняет функции транспортного уровня ISO/OSI по управлению передачей данных в пределах установленных сессий и некоторые функции (шифрование/дешифрование и др.) шестого уровня.

Уровень управления маршрутом (Path Control) определяет функции, в основном входящие в сетевой уровень модели ISO/OSI, а также включает в себя управление потоками данных (в модели ISO/OSI это функция канального уровня).

Уровень звена данных (Data Link) почти аналогичен второму уровню эталонной модели и совместим с ним по используемому протоколу, так как протоколы 802.2 и SDLC входят в семейство оригинального протокола HDLC.

На этих уровнях располагаются протоколы:

  • APPC (Advanced Program-to-Program Communication) - выполняет функции сеансового и транспортного уровней ISO/OSI; на сеансовом уровне обеспечивает администрирование сеанса и трансляцию синтаксиса файлов, а на транспортном - организацию последовательностей сегментов и сквозное управление потоком данных.

  • CICS (Customer Information Control System) - инструментальное средство для построения приложений обработки транзакций, организует доступ к распределенной файловой системе, защиту информации, многозадачность и пр.

  • IMS (Information Management System) - еще одна среда обработки транзакций, подобная CICS, позволяющая нескольким приложениям совместно использовать базы данных и планировать приоритеты транзакций.

  • TSO (Time Sharing Operation) - обеспечивает интерактивный пользовательский терминальный интерфейс, реализуя одновременную поддержку множества независимых параллельных пользовательских сеансов; каждый пользователь TSO при помощи специальных команд получает возможность выполнять операции над наборами данных, запускать задания и контролировать ход их выполнения, использовать устройства, связываться с другими пользователями и т.п.

Среди них коммуникационные:

  • APPN (Advanced Peer-to-Peer Networking) - работает на сетевом и транспортном уровнях и обеспечивает одноранговое сетевое взаимодействие между несколькими физическими устройствами (миникомпьютерами, кластерными контроллерами, шлюзами, рабочими станциями и пр.); предусматривает управление окном передач и службу каталогов.

  • VTAM (Virtual Telecommunication Access Method) - обеспечивает управление, обмен данными и управление потоками данных в сетях SNA; на сеансовом уровне VTAM управляет диалогом и реализует управление сеансом, а на транспортном уровне обеспечивает сквозное управление потоками данных.

  • NCP (Network Control Program) - протокол управления ресурсами, подключенными к коммуникационным контроллерам; частично выполняет функции сетевого уровня (маршрутизация, шлюзование) и частично - канального уровня (управление доступом к каналу, физическая и логическая адресация, управление потоком данных).

Первый уровень - физический (Physical) подобно модели ISO/OSI определяет характеристики сопряжения со средой передачи данных. Решения этого уровня основаны преимущественно на тех же стандартах и рекомендациях, что и модель ISO/OSI.

Рис. 4.9.  Уровневые компоненты сетевых архитектур, отображенные на модели ISO/OSI

Рис. 4.10.  Три стека протоколов, отображенные на модели ISO/OSI

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX и Sequenced Packet Exchange, SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX.

Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая долгое время сохраняла мировое лидерство по числу установленных систем, хотя в последнее время ее популярность намного снизилась, и по темпам роста она заметно отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые быстро работали бы на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень — в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell, и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали его поле деятельности только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 специалисты Novell внесли и продолжают вносить в протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Этот стек широко применяется в продуктах компаний IBM и Microsoft. На его физическом и канальном уровнях используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network компании IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI — NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций.

Протокол NetBEUI выполняет много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако он не обеспечивает возможность маршрутизации пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях.

Некоторые ограничения NetBEUI снимаются в реализации этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA компании IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP компании Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На рис. 9.3 показано соответствие некоторых наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI — это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности: ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3–4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, объединяющий функции сеансового, представительного и прикладного уровней.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]