Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мат анализ 2 blok.docx
Скачиваний:
4
Добавлен:
18.12.2018
Размер:
444.41 Кб
Скачать

18.Длина дуги

1. Длина дуги в прямоугольной системе координат

Пусть кривая L задана уравнением у = у(х),причем

у(х) — непрерывно дифференцируемая функция на [а, Ь]. Разобьем ее на п частей точками с абсциссамии проведем хорды через эти точки (рис. 18.9, а). Получим вписанную ломаную, причем длинаеего звена равна

где По теореме Лагранжа

а длина всей ломаной, вписанной в кривую L, равна .Из определения длины дуги имеем . Так как правая часть есть интегральная сумма для функции то

2. Длина дуги при параметрическом задании L

3. Длина дуги в полярных координатах

19.Теорема Ролля

Если функция f(x) непрерывна на замкнутом интервале [а, b], имеет внутри интервала производную и если f(a) = f(b)

то внутри интервала [а, b] найдется хотя бы одно такое значение x0 (a < x0 < b), что

f ' (x0) = 0.Доказательство. Рассмотрим два случая. 1. Функция f(x) постоянна на интервале [а, b]; тогда f ' (x) = 0 для любого x (a < x < b), т.е. утверждение теоремы Ролля выполняется автоматически.

2. Функция f(x) не является постоянной (Рисунок 1); тогда наибольшего или наименьшего или обоих этих значений она достигает во внутренней точке интервала, ибо f(b) = f(a), и если f(a) - наименьшее значение, то наибольшее значение значение функция f(x) примет внутри интервала.

Рис.1

Пусть например f(x0) - наибольшее значение функции f(x) на интервале [а, b] и x0 - внутренняя точка этого интервала. Тогда f(x0) является максимумом функции: f(x0) і f(x) для всех x из достаточно малой окрестности x0 [за эту окрестность можно впрочем, взять интервал (а, b)].

Так как, по условию, f(x) имеет в точке x0 производную, то по теореме о необходимом признаке экстремума,

f ' (x0) = 0, и теорема Ролля доказана.

27. Вычисление площади криволинейной трапеции.

Пусть на отрезке [а; b] оси Ох задана непрерывная функция f, не меняющая на нем знака. Фигуру, ограниченную графиком этой функции,

отрезком [а; b] и прямыми х = а и х = b (рис. 1), называют криволинейной трапецией. Различные примеры криволинейных трапеций приведены на рисунках 1, а — д.

Для вычисления площадей криволинейных трапеций применяется следующая теорема:

Теорема. Если f — непрерывная и неотрицательная на отрезке [а; b] функция, a F — ее первообразная на этом отрезке, то площадь S соответствующей криволинейной трапеции (рис. 2) равна приращению первообразной на отрезке [а; b] т. е.

S=F(b)-F(a). (1)

Доказательство. Рассмотрим функцию S (х), определенную на отрезке [а; b]. Если а <x≤b, то S (х) — площадь той части криволинейной трапеции, которая расположена левее вертикальной прямой, проходящей через точку М (х; 0) (рис. 2, а). Если х=а, то S (а) = 0. Отметим, что S(b)=S (S — площадь криволинейной трапеции).

при (3)

Выясним геометрический смысл числителя Δ S (х). Для простоты рассмотрим случай ΔX>0. Поскольку Δ S(х)= S (х + Δ х) — S (х), то Δ S (х) — площадь фигуры, заштрихованной на рисунке 2, б. Возьмем теперь прямоугольник той же площади Δ S(x),опирающийся на отрезок [х; х+Δ х] (рис. 2, в). В силу непрерывности функции f верхняя сторона прямоугольника пересекает график функции в некоторой точке с абсциссой с ∈ [х; х+Δ х] (в противном случае этот прямоугольник либо содержится в части криволинейной трапеции над отрезком [х;x+Δx], либо содержит ее; соответственно его площадь будет меньше или больше площади Δ S (X)). Высота прямоугольника равна f (с). По формуле площади прямоугольника имеем Δ S (x)=f (с) Δ х, откуда (Эта формула верна и при Δ х<0.) Поскольку точка с лежит между х и х + Δx; то с стремится к х при . Так как функция f непрерывна, при . Итак, при .Формула (2) доказана.Мы получили, что S есть первообразная для f. Поэтому в силу основного свойства первообразных для всех х∈ [а;b] имеем

S(x) = F(x)+C,

где С — некоторая постоянная, a F — одна из первообразных для функции f. Для нахождения С подставим х = а:

F(a)+C=S(a)=0,

откуда C=—F(a). Следовательно,

S(x) = F(x)-F(a). (4)

Поскольку площадь криволинейной трапеции равна S (b), подставляя х = b в формулу (4), получим:

S=S(b)=F(b)-F(a).