Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.docx
Скачиваний:
1
Добавлен:
18.12.2018
Размер:
105.69 Кб
Скачать

Вопрос 34

Специфика живых организмов с точки зрения понятия энтропии?

Все живые организмы являются активными потребителями энергии: животные, растения и микроорганизмы. Растения получают энергию от Солнца. Травоядные животные переваривают растительную органику, а плотоядные кормятся за счет других животных. Микроорганизмы способны вырабатывать энергию из неорганических соединений (хемосинтез) за счет окисления железа, серы или азота. Анаэробные организмы не нуждаются в кислороде (некоторые просто гибнут при его избытке) и питаются за счет ферментативного расщепления органики, например брожение (дрожжи и грибки).

Общее у всего живого – это постоянный приток энергии. Энергия тратится на синтез сложных органических соединений, поэтому в процессе роста энтропия живого существа убывает или стабилизируется на определенном уровне.

Вопрос 35

Принцип соответствия Бора в квантовой механике?

Несмотря на большую занятость административными делами, Бор продолжал развивать свою теорию, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913, когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона. Начиная с 1918, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора (в частности, для гармонического осциллятора); дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений. Впоследствии Бор дал чёткую формулировку принципу соответствия:

…"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.

Принцип соответствия сыграл огромную роль и при построении последовательной квантовой механики. Именно из него исходил в 1925 Вернер Гейзенберг при построении своей матричной механики. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки.

В 1921—1923 в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева, представив схему заполнения электронных орбит (оболочек, согласно современной терминологии). Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 нового элемента гафния Дирком Костером и Георгом Хевеши, работавшими в то время в Копенгагене. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию, а не к редкоземельным элементам, как думали ранее.

В 1922 Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома». В своей лекции «О строении атомов», прочитанной в Стокгольме 11 декабря 1922, Бор подвёл итоги десятилетней работы.

Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия (простейшей двухэлектронной системе), которой они занимались с 1916. Бор отчётливо понимал ограниченность существующих подходов (так называемой «старой квантовой теории») и необходимость построения теории, основанной на совершенно новых принципах:

весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]