Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цепи с распред11.doc
Скачиваний:
15
Добавлен:
17.12.2018
Размер:
666.62 Кб
Скачать

8.4. Уравнения линии конечной длины

Постоянные и  в полученных в предыдущей лекции формулах

;  

(5)

()

(6)

определяются на основании граничных условий.

Пусть для линии длиной l (см. рис. 1) заданы напряжение  и ток  в начале линии, т.е. при x=0.

Тогда из (5) и (6) получаем

откуда

Подставив найденные выражения  и  в (5) и (6), получим

       

(7)

   

(8)

Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение  и ток  в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде

;  

(9)

(10)

Обозначив  и , из уравнений (9) и (10) при  получим

откуда

После подстановки найденных выражений  и  в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии

;

(11)

(12)

 Координату обозначают еще как y.

8.5. Уравнения длинной линии как четырехполюсника

В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями

;

.

Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условия  выполняются.

Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.

Определение параметров длинной линии из опытов холостого хода и короткого замыкания

Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ).

При ХХ  и , откуда входное сопротивление

     .

(13)

При КЗ  и . Следовательно,

.    

(14)

На основании (13) и (14)

 

(15)

и

,

откуда

.       

(16)

Выражения (15) и (16) на основании данных эксперимента позволяют определить вторичные параметры и  линии, по которым затем могут быть рассчитаны ее первичные параметры ,, и.

8.6. Линия без потерь

Линией без потерь называется линия, у которой первичные параметры  и  равны нулю. В этом случае, как было показано ранее,  и . Таким образом,

,

откуда.

Раскроем гиперболические функции от комплексного аргумента:

Тогда для линии без потерь, т.е. при , имеют место соотношения:   и .

Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:

(17)

.     

(18)

Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении  и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18).