Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цепи с распред11.doc
Скачиваний:
15
Добавлен:
17.12.2018
Размер:
666.62 Кб
Скачать

8. Линейные цепи с распределенными параметрами. Длинные линии.

Электрические цепи можно подразделить на две большие группы :

1) Цепи с сосредоточенными параметрами – здесь привычные параметры сопротивления, индуктивности и емкости сосредоточены в локальных точках цепи

2) цепи с распределенными параметрами- здесь привычные параметры сопротивления, индуктивности и емкости не сосредоточены в локальных точках цепи , а распределены по ее объему. В таких цепях не применимы непосредственно законы Кирхгофа для токов и напряжений, а следует использовать законы электромагнитного поля (уравнения Максвелла).

Для оценки, к какому типу отнести цепь с сосредоточенными или распределенными параметрами – следует сравнить ее геометрические размеры с длиной электромагнитной волны λ=VT=V/f. Если размеры цепи сопоставимы с l>0,1……0,25∙ λ, то цепь следует рассматривать как цепь с распределенными параметрами, так как здесь нельзя пренебречь временем распространения электромагнитного колебания (волны) по цепи.

Если только длина цепи сопоставима с четвертью длины волны, а остальные параметры не сопоставимы, то такую цепь называют длинной линией. Например, для ƒ=5OΓц, т.е. приТ=0.02c и V=3▪108м/c, λ = 6000▪103м

и λ/4=1500 км. Для ƒ=108Гц λ/4=0,75м, т.е. уже при l=0,5м к цепи следует подходить как к цепи с распределенными параметрами, так как здесь нельзя пренебречь временем распространения волны.

Длинная линия (линия передачи) – устройство, ограничивающее область распространения электромагнитных колебаний и направляющее поток электромагнитной энергии в заданном направлении. Линия называется регулярной, если в продольном направлении неизменны ее поперечное сечение, положение ее в пространстве и электромагнитные свойства заполняющих ее сред. Линия является однородной, если в произвольном поперечном сечении параметры среды неизменны.

Для исследования процессов в цепи с распределенными параметрами (в основном длинных линий) введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности, сопротивления, емкости и проводимости. Такую линию называют однородной. Линию с неравномерным распределением параметров часто можно разбить на однородные участки.

8.1. Уравнения однородной линии в стационарном режиме

Под первичными параметрами линии будем понимать сопротивление R0 (Ом/м) индуктивность L0 (Гн/м), проводимость G0 (go) (Cм/м) и емкость C0 (Ф/м), отнесенные к единице ее длины. Для получения уравнений однородной линии разобьем ее на отдельные участки бесконечно малой длины  << λ/4 со структурой, показанной на рис. 1, где переменная х показывает расстояние от начала линии. Здесь уже можно применить законы Кирхгофа. Пусть напряжение и ток в начале такого элементарного участка равны u и i, а в конце соответственно и . Здесь используются частные производные, так как ток и напряжение еще функции времени.

Разность напряжений в начале и конце участка определяется падением напряжения на резистивном и индуктивном элементах, а изменение тока на участке равно сумме токов утечки и смещения через проводимость и емкость. Таким образом, по законам Кирхгофа с учетом, что ток и напряжение следует рассматривать функциями двух переменных координаты х и времени t получим

или после сокращения на dx

;    

(1)

.     

(2)

Эти уравнения называют телеграфными, так как были рассмотрены при исследовании передачи телеграфных сообщений.

Теорию цепей с распределенными параметрами в установившихся режимах будем рассматривать для случая синусоидального тока. Тогда полученные соотношения при ƒ=0 можно распространить  и на цепи постоянного тока, а воспользовавшись разложением в ряд Фурье – на линии периодического несинусоидального тока. При гармоническом воздействии, вводя комплексные величины и заменяя ∂⁄∂t на , на основании (1) и (2) получаем

-dUdx=( Ro+jωLo)I=ΖoI;

(3)

-dI ⁄dx=( Go+jωCo) ∙U=YoU

(4)

Где Ζo = Ro+jωLo и Yo=Go+jωCo - соответственно комплексные продольное сопротивление и поперечная проводимость схемы замещения на единицу длины линии.

Продифференцировав (3) по х и подставив выражение dI⁄dx из (4), запишем

U ⁄dx² = Ζo∙Yo∙U

Характеристическое уравнение

-Ζo∙Yo=0,

откуда

p=± - величина комплексная, обозначаемая γ=α+jβ и называемая постоянная распространения длинной линии; α- коэффициент ослабления (затухания); β - коэффициент фазы длинной линии.

Таким образом, будем иметь в решении две составляющие для действующих значений напряжений

U=А1∙е-γx+A2eγx=A1e-αxe-x+A2eαxejβ∙x

(5)

Для тока согласно уравнению (3) можно записать

,

(6)

где - волновое сопротивление линии.

Волновое сопротивление ZВ и постоянную распространения γ называют вторичными параметрами длинной линии, которые характеризуют ее свойства как устройства для передачи электрического сигнала. Определяя  и , на основании (5) запишем

.

(7)

Аналогичное уравнение согласно (6) можно записать для тока.

Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая движется и затухает в направлении возрастания х, вторая убывания х. Действительно, в фиксированный момент времени каждое из слагаемых представляет собой затухающую (вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной точке – синусоидальную функцию времени.

Волну, движущую от начала линии в сторону возрастания х, называют прямой (падающей), а движущуюся от конца линии в направлении убывания хобратной (отраженной). Коэффициент ослабления показывает как изменяется амплитуда или действующее значение составляющей волны (например прямой волны) на единицу длины в логарифмических единицах , а коэффициент фазы β=Ψ(x)-Ψ(x+1) – как изменяется фаза составляющей волны на единицу длины в однородной линии.

На рис. 2 представлена затухающая синусоида прямой волны для моментов времени  и . Перемещение волны характеризуется фазовой скоростью. Это скорость перемещения по линии неизменного фазового состояния, т.е. скорость, с которой нужно перемещаться вдоль линии, чтобы наблюдать одну и ту же фазу волны:

.

(8)

Продифференцировав (8) по времени, получим

.

(9)

Длиной волны  называется расстояние между двумя ее ближайшими точками, различающимися по фазе на 2 рад. В соответствии с данным определением

,

откуда

и с учетом (9)

.

В соответствии с введенными понятиями прямой и обратной волн распределение напряжения вдоль линии в любой момент времени можно трактовать как результат наложения двух волн: прямой и обратной, перемещающихся вдоль линии с одинаковой фазовой скоростью, но в противоположных направлениях:

,

(10)

где в соответствии с (5)  и .

Представление напряжения в виде суммы прямой и обратной волн согласно (10) означает, что положительные направления напряжения для обеих волн выбраны одинаково: от верхнего провода к нижнему.

Аналогично для тока на основании (6) можно записать

,

(11)

Где  и .

Положительные направления прямой и обратной волн тока в соответствии с (11) различны: положительное направление прямой волны совпадает с положительным направлением тока  (от начала к концу линии), а положительное направление обратной волны ему противоположно.

На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется закон Ома в комплексной форме

,