Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ ЖБК без преднапряжения.doc
Скачиваний:
24
Добавлен:
13.11.2018
Размер:
4.83 Mб
Скачать

Примеры расчета

Пример 10. Дано: железобетонный прогон кровли с уклоном 1:4 (ctgβ = 4); сечение и расположение арматуры - по черт.3.8; бетон класса В25 (Rb =14,5МПа); растянутая арматура класса А400 (Rs = 355МПа); As = 763 мм2 (3Æ18); A's= 0,0; изгибающий момент в вертикальной плоскости M = 82,6 кНм.

Требуется проверить прочность сечения.

Ра с ч е т. Из черт.3.8 следует:

ho = 400-30-(1·30/3)=360 мм; bo = (2·120+1·30)/3=90 мм; b'ov = bov = (300-150)/2=75 мм;

h'f = 80+20/2=90 мм.

Черт.3.8 к примеру расчета 10

1 -плоскость действия изгибающего момента; 2-центр тяжести сечения растянутой арматуры

По формуле (3.37) определим площадь сжатой зоны бетона Аb

Площадь наиболее сжатого свеса полки и статические моменты этой площади относительно х и у соответственно равны:

Aov= b'ov h'f = 75·90 = 6750 мм2;

Sov,y = Aov (b0 + b'ov /2)=6750(90 + 75/2) = 86,06·104 мм3;

Sov,x = Aov(h0 - h'f /2) = 6750(360 - 90/2) = 212,6·104 мм3.

Так как Аb > Aov, расчет продолжаем как для таврового сечения.

Aweb = 18680 - 6750 = 11930 мм2.

Определим по формуле (3.38) размер сжатой зоны х1. Для этого вычисляем

Проверим условие (3.39):

следовательно, расчет продолжаем по формулам косого изгиба.

Проверим условие (3.40) для наименее растянутого стержня. Из черт.3.8 имеем boi = 30 мм, hoi = 400 - 30 = 370 мм;

(см. табл. 3.2).

Условие (3.40) не соблюдается. Расчет повторим, заменяя в формуле (3.37) значение Rs для наименее растянутого стержня напряжением σS определенным по формуле (3.41), и корректируя значения ho и bо.

Поскольку все стержни одинакового диаметра, новые значения Ao, ho и bо будут равны:

Аналогично определим значения Sov,y, Sov,x, Aweb и x1:

Sov,y = 6750· (91,1 + 75/2) = 86,8·104 мм3;

Sov,x = 6750· (359,8 - 90/2) = 212,5·104 мм3;

Aweb = 18338 - 6750 = 11588 мм2;

Проверяем прочность сечения из условия (3.35), принимая Ssx=0 и

Rb[Aweb(h0-х1/3) + Sov,x] = 14,5[11588(359,8-173,1/3)+212,5·104] = 81,57·106 Н·мм > Mx = 80,1·106 Н·мм

т.е. прочность сечения обеспечена.

Пример 11. По данным примера 10 необходимо подобрать площадь растянутой арматуры при моменте в вертикальной плоскости M = 64кНм.

Расчет. Составляющие изгибающего момента в плоскости осей у и х равны:

Mx =Myctgβ = 15,52·4 = 62,1 кНм.

Определим необходимое количество арматуры согласно п.3.28.

Принимая значения Rb, ho, Sov,x и Sov,y из примера 10 при Ssy = Ssx = 0 находим значения aтх и amy:

Так как aтх > 0, расчет продолжаем для таврового сечения.

Поскольку точка с координатами aтх = 0,185 и amy = 0,072 на графике черт.3.7 находится по правую сторону от кривой, отвечающей параметру , и по левую сторону от кривой, отвечающей параметру b'ov/bov = 75 / 90 = 0,83, расчет продолжаем с учетом косого изгиба и полного расчетного сопротивления арматуры, т.е. условие (3.40) выполнено.

На графике координатам aтх = 0,185 и amy = 0,072 соответствует значение as = 0,20. Тогда согласно формуле (3.42) площадь сечения растянутой арматуры будет равна

Аs = (as boho + Aov)Rb/Rs = (0,2·90·360 + 6750)14,5/355 = 540,4 мм2.

Принимаем стержни 3Æ16 (Аs = 603 мм2) и располагаем их, как показано на черт.3.8.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

3.29. Расчет элементов при действии поперечных сил должен обеспечить прочность:

- по полосе между наклонными сечениями согласно п.3.30;

- на действие поперечной силы по наклонному сечению согласно пп.3.31- 3.42;

- на действие момента по наклонному сечению согласно пп.3.43-3.48.

Расчет железобетонных элементов по полосе между наклонными сечениями

3.30. Расчет изгибаемых элементов по бетонной полосе между наклонными сечениями производят из условия

Q < 0,3Rbbho, (3.43)

где Q - поперечная сила в нормальном сечении, принимаемая на расстоянии от опоры не менее ho.

Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил

Элементы постоянной высоты, армированные хомутами, нормальными к оси элемента

3.31. Расчет изгибаемых элементов по наклонному сечению (черт.3.9) производят из условия

Q < Qb + Qsw, (3.44)

где Q - поперечная сила в наклонном сечении с длиной проекции с от внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения; при вертикальной нагрузке, приложенной к верхней грани элемента, значение Q принимается в нормальном сечении, проходящем на расстоянии с от опоры; при этом следует учитывать возможность отсутствия временной нагрузки на приопорном участке длиной с;

Qb - поперечная сила, воспринимаемая бетоном в наклонном сечении;

Qsw - поперечная сила, воспринимаемая хомутами в наклонном сечении.

Поперечную силу Qb определяют по формуле

(3.45)

где

(3.46)

Значение Qb принимают не более 2,5Rbtbho и не менее 0,5Rbtbho.

Значение с определяют согласно п.3.32.

Усилие Qsw определяют по формуле

Qsw = 0,75 qsw co, (3.47)

где qsw - усилие в хомутах на единицу длины элемента, равное

(3.48)

cо - длина проекции наклонной трещины, принимаемая равной с, но не более 2ho.

Хомуты учитывают в расчете, если соблюдается условие

qsw > 0,25Rbtb (3.49)

Можно не выполнять это условие, если в формуле (3.46) учитывать такое уменьшенное значение Rbtb, при котором условие (3.49) превращается в равенство, т.е. принимать

Черт.3.9. Схема усилий в наклонном сечении элементов с хомутами при расчете его на действие поперечной силы

3.32. При проверке условия (3.44) в общем случае задаются рядом наклонных сечений при различных значениях с, не превышающих расстояние от опоры до сечения с максимальным изгибающим моментом и не более 3ho

При действии на элемент сосредоточенных сил значения с принимают равными расстояниям от опоры до точек приложения этих сил (черт.3.10), а также равными но не меньше h0, если это значение меньше расстояния от опоры до 1-го груза.

При расчете элемента на действие равномерно распределенной нагрузки q невыгоднейшее значение с принимают равным , а если при этом или , следует принимать , где значение q1 определяют следующим образом:

а) если действует сплошная равномерно распределенная нагрузка q, q1 = q;

б) если нагрузка q включает в себя временную нагрузку, которая приводится к эквивалентной по моменту равномерно распределенной нагрузке qv (т.е. когда эпюра моментов М от принятой в расчете нагрузки qv всегда огибает эпюру М от любой фактической временной нагрузки), q1 = q - 0,5 qv.

При этом в условии (3.44) значение Q принимают равным Qmax - q1с, где Qmax - поперечная сила в опорном сечении.

Черт.3.10. Расположение расчетных наклонных сечений при сосредоточенных силах 1 - наклонное сечение проверяемое на действие поперечной силы Q1; 2 – то же, силы Q2

3.33. Требуемая интенсивность хомутов, выражаемая через qsw (см. п.3.31), определяется следующим образом:

а) при действии на элемент сосредоточенных сил, располагаемых на расстояниях сi от опоры, для каждого i-го наклонного сечения с длиной проекции сi не превышающей расстояния до сечения с максимальным изгибающим моментом, значение qsw(i) определяется следующим образом в зависимости от коэффициента аi = сi /ho, принимаемого не более 3:

если

(3.50)

если

(3.51)

где а0i - меньшее из значений аi и 2;

Qi - поперечная сила в i-ом нормальном сечении, расположенном на расстоянии сi от опоры;

окончательно принимается наибольшее значение qsw,

б) при действии на элемент только равномерно распределенной нагрузки q требуемая интенсивность хомутов qsw определяется в зависимости от следующим образом:

если Qbi 2Mb/ho - Qmax

; (3.52)

если Qbi < 2Mb/ho - Qmax.

; (3.53)

при этом, если Qbl < Rbtbho,

, (3.54)

где Mb, - см. п.3.31; q1 -см. п.3.32.

В случае, если полученное значение qsw не удовлетворяет условию (3.49), его следует вычислять по формуле

(3.55)

и принимать не менее .

3.34. При уменьшении интенсивности хомутов от опоры к пролету с qsw1 до qsw2 (например, увеличением шага хомутов) следует проверить условие (3.44) при значениях с, превышающих l1 - длину участка с интенсивностью хомутов qsw1 (черт.3.11). При этом значение Qsw принимается равным:

если с < 2ho + l1,

Qsw = 0,75[qsw1co- (qsw1 - qsw2)(c - l1)]; (3.56)

если с > 2ho + l1,

Qsw = 1,5qsw2ho, (3.57)

co -см. п.3.31.

При действии на элемент равномерно распределенной нагрузки длина участка с интенсивностью хомутов qsw1 принимается не менее значения l1, определяемого в зависимости от Δqsw = 0,75(qsw1 - qsw2) следующим образом:

- если Δqsw < q1,

(3.58)

где , но не более 3hо

при этом, если

- если Δqswq1

(3.59)

здесь Мb, c0 -см. п.3.31; q1- см. п.3.32;

Qb.min = 0,5Rbtbho

Если для значения qsw2 не выполняется условие (3.49), длина l1 вычисляется при скорректированных согласно п.3.31 значениях и Qb.min = 2hoqsw2; при этом сумма (Qb.min + 1,5qswho) в формуле (3.59) принимается не менее нескорректированного значения Qb.min