Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПРИКЛАДНАЯ ГЕОДЕЗИЯ Е.Н. Хмырова.doc
Скачиваний:
24
Добавлен:
06.11.2018
Размер:
6.56 Mб
Скачать

1.4.1 Передача координат на полигонометрические знаки

Для передачи координат на стенной знак В закрепляют временный грунтовый знак полигонометрического хода так, чтобы угол от стенного знака был

Рисунок 1.10 – Передача координат на стенной знак полигонометрии, расположенный между двумя грунтовыми реперами

в пределах 80 -90 , а расстояние l1=BP составляло 5-15 м. В полевых условиях измеряют 1, 2, 3, 1, 2, l1, S1, S2.

Для вычисления координат выполняют следующие построения: опускают перпендикуляры h1, h2 на АР и РС (см.рис.1.10) и вычисляют:

1) h1=l1  sin1;

h2=l2  sin2.

2) X1=l1 cos1;

X2=l2 cos2.

3) из треугольника АВК и СВМ следует :

=

=

4)

5) 1 = 1 + 1

3 = 3 + 3

2= 2 - (1 + 3).

Получив все данные для уравнивания хода полигонометрии, его уравнивают обычным методом и определяют координаты стенного репера В.

Если отсутствует видимость с земли на пункт триангуляции, то необходимо измерить примычной угол со столика- сигнала (ошибка проектирования центра триангуляционного знака допускается до 5 мм, что при коротких длинах будет давать ошибку в примычном угле 5"). Уменьшить ошибку центрирования можно, измеряя примычной угол через вспомогательное направление, для чего выбираем удаленный, но хорошо видимый предмет - ориентир N. Устанавливают теодолит на штатив и измеряют угол 1 между последней линией полигонометрического хода 2А и направлением на ориентир N, затем поднимают теодолит на сигнальный столики измеряют примычной угол 1 или 2.

Дирекционный угол со стороны АС на А2 передают через вычисленный угол :  = 1 + 1

Чтобы передать координаты со знака 0 на здании на пункты С ,В, А на земле, разбивают разбивочный базис и измеряют b1 и b2.

Рисунок 1.11 – Передача координат со здания на грунтовый пункт полигонометрического хода

Также измеряют углы 1, 2, 3, 1, 2. Затем вычисляют l1:

О-А=О-Р + 1.

Затем вычисляют координаты XА и YА

1.4.2 – Геодезические разбивочные опорные сети

Геодезические опорные разбивочные сети служат основой для выноса проектов сооружения в натуру, соблюдения их геометрических параметров, производства геодезических наблюдений за смещениями и деформациями инженерных сооружений. Они создаются на строительной площадке в виде развитой сети закрепленных знаками пунктов и обеспечивают исходными данными последующие построения на всех этапах строительства и эксплуатации сооружений.

Геодезическую разбивочную основу увязывают с имеющимися в районе строительства пунктами государственной сети или геодезических сетей сгущения, а также пунктами периода ранее проведенных инженерных изысканий. Точность построения геодезической разбивочной основы должна соответствовать требованиям табл.5. (СНиП 3.01.04-2004. Геодезические работы в строительстве).

Класс точности построения геодезической разбивочной основы особо сложных и уникальных инженерных сооружений, а также зданий выше 16 этажей устанавливают при разработке проекта производства геодезических работ (ППГР). Точность измерения базиса геодезической разбивочной основы определяется специальными расчетами.

Геодезическую разбивочную основу создает заказчик и не менее чем за 10 дней до начала строительно-монтажных работ передает подрядчику техническую документацию на нее и на закрепленные на площадке строительства пункты и знаки основы. Знаки геодезической разбивочной основы в процессе строительства находятся под наблюдением за их сохранностью и устойчивостью. Положение знаков проверяет строительная организация не реже двух раз в год или в сроки, установленные в ППГР.

В районах крупного строительства и на городских территориях создается высотная основа для инженерно-геодезических разбивочных работ и наблюдений за осадками в виде нивелирных сетей II и III классов. Ходы нивелирования IV класса развивают по необходимости. При строительстве уникальных и крупных инженерных сооружений, для монтажа и наблюдения за осадками создают локальные специальные опорные высотные инженерно-геодезические сети высокой точности.

Необходимость создания высокоточных высотных опорных геодезических сетей обосновывается в ППГР. Методику и точность производства геодезических измерений выбирают на основе расчетов точности и оценки качества проектов нивелирных сетей. Нивелирные ходы таких сетей прокладывают в прямом и обратном направлениях или при двух горизонтах инструмента.

Таблица 1.1 – Требования к точности построения разбивочной основы

Класс

Объекты строительства

Допустимые средние квадратические погрешности

точно

сти

угловые величины, сек

линейные измерения

отметки, мм

1-0

Предприятия и группы зданий и сооружений на участках площадью более 100 га. Отдельно стоящие здания и сооружения с площадью застройки более 100 тыс. кв. м.

5

1:50 000

2

2-0

Предприятия и группы зданий и сооружений на участках площадью до 100 га. Отдельно стоящие здания и сооружения с площадью застройки свыше 10 до 100 тыс. кв. м.

10

1:15 000

2

3-0

Здания и сооружения с площадью застройки до 10 тыс. кв. м

Дороги, подземные и надземные коммуникации в пределах застраиваемых территорий

20

1:5 000

3

4-0

Дороги, подземные и надземные коммуникации вне застраиваемой территории

30

1:2 000

5

Для высокоточного нивелирования применяют нивелиры Н1, Н2, Ni004, Ni007, DNA 03 и др. Рейки – штриховые цифровые с инварной полосой. Нивелиры и рейки подвергают тщательным исследованиям по полной программе.

Выбор вида построения опорных разбивочных геодезических сетей зависит от следующих факторов:

- типа объекта;

- его формы и площади;

- его назначения;

- физико-географических условий района строительства;

- точности;

- наличия измерительных средств у исполнителя и др.

Например, триангуляция применяется для значительных площадей, особенно для вытянутых объектов: мостов, гидротехнических сооружений и т.д.

Полигонометрия применяется для застроенных территорий и дорожного строительства.

Линейно - угловые сети применяются при строительстве уникальных сооружений, где требуется высокая точность.

Строительная сетка применяется при строительстве крупных промышленных комплексов.

Теодолитные ходы применяются при строительстве отдельных зданий небольшой этажности, при прокладке сетей коммуникаций.

Инженерно-геодезические (опорные геодезические разбивочные сети) сети обладают следующими особенностями:

- создаются на конкретных объектах;

- имеют ограниченные размеры с небольшим числом фигур и короткими длинами;

- плотность пунктов и точность построения сети рассчитывается от конкретных задач;

- сеть строится, как правило, в виде свободных построений в условной прямоугольной системе координат с привязкой к государственной сети.

1.5 – Геодезическая строительная сетка

Геодезические строительные сетки - основной вид сетей, положение пунктов которых задается при проектировании генерального плана, а затем с требуемой точностью выносится на местность.

Строительной геодезической сеткой называют разбивочную сеть, построенную из квадратов или прямоугольников, вершины которых закреплены постоянными знаками, а стороны параллельны осям строительной системы координат (основным осям сооружений). Точность построения строительной сетки должна обеспечивать разбивку основных осей сооружений и исполнительную съемщику построенных объектов.

Строительные сетки - основной вид разбивочных сетей при промышленном строительстве.

Основное достоинство заключается в следующем:

- строительную сетку проектируют при составлении генерального плана будущего сооружения, а затем переносят на местность в соответствии с проектом ;

- взаимное расположение пунктов строительной сетки и будущих объектов известно заранее, еще до построения сетки на местности можно выполнить всю аналитическую подготовку для выноса проекта в натуру, что в свою очередь позволяет начинать разбивочные работы сразу же после построения сетки.

Основным методом разбивки при такой конфигурации сетки (параллельность сторон основным осям сооружений) является способ прямоугольных координат, как наиболее простой. Для этого способа наиболее проста, по сравнению с другими, и аналитическая подготовка разбивочных работ. Поэтому, если из-за каких-то препятствий на местности некоторые линии сетки нельзя закрепить в соответствии с проектом, их перемещают параллельно проектному положению, сразу же внося коррективы в разбивочные чертежи.

Проектировщики и строители предпочитают сетку квадратов, как наиболее простую для составления разбивочных чертежей. С точки зрения длительной сохранности сетки иногда выгодна сетка прямоугольников, внутри которых вписываются основные сооружения. Наиболее распространены сетки квадратов со стороной 200 м; для предприятий с большим числом коммуникаций иногда строят сетки со стороной 100 м. Весьма целесообразно создавать наряду с типовыми проектами предприятий и типовые схемы строительных сеток. В ряде случаев рационально делать строительную сетку разной густоты и конфигурации.

При расчете точности измерений для разбивки строительной сетки следует исходить из того, что она должна, во-первых, обеспечить разбивку основных осей сооружений и, во-вторых, служить основой для съемки исполнительного генерального плана.

Для разбивки основных осей сооружений важно выдержать высокую точность взаимного расположения соседних пунктов сетки.

В литературе делалось множество попыток обосновать точность построения строительных сеток в зависимости от шага колонн, точности монтажа и изготовления конструкций или в зависимости от класса сооружения и технологии разбивочных работ.

Приведем средние квадратические ошибки измерений, допускаемые СНиП, для построения геодезической разбивочной основы.

Таблица 1.2 – Допустимые среднеквадратические ошибки измерений при построения разбивочной основы

Характеристика объектов

Углы

Стороны

Превышение, мм

Предприятия и группы зданий и сооружений на участках более 100 га. Отдельно стоящие здания и сооружения с площадью застройки более 100 тыс. квадратных метров

5

1/50 000

2

Предприятия и группы зданий и сооружений на участках до 100 га. Отдельно стоящие здания и сооружения с площадью застройки от 10 до 100 тыс. квадратных метров

10

1/15 000

2

Здания и сооружения с площадью застройки до 10 тыс. квадратных метров

20

1/5 000

3

Расчет точности построения строительной сетки геодезисты должны выполнять совместно с проектировщиками, учитывая межцеховые связи, коммуникации, автоматические линии и т. п. Кроме того, построение строительной сетки можно разделить на секции, разбиваемые с разной точностью: с более высокой точностью - для основных сооружений и ниже - для складских и вспомогательных сооружений.

1.5.1 – Проектирование строительной сетки

Строительную сетку вновь создаваемого предприятия проектируют на его генеральном плане. Предварительно выбрав длину стороны, сетку вычерчивают на кальке в масштабе генплана. После этого, наложив кальку на генплан, сохраняя параллельность сторон основным осям сооружений, смещают ее так, чтобы минимальное число пунктов попало в зону земляных работ. Этот вариант принимают за окончательный, который переносят на генплан.

Поскольку при этом методе неизбежно какая-то часть пунктов попадает на здания, сооружения или в зону земляных работ, их сразу отмечают, чтобы не закреплять постоянными знаками при построении сетки на местности.

Если же строительная сетка создается для расширения или реконструкции существующего предприятия, ее проект должен быть увязан с уже существующей строительной сеткой или заменяющим ее планово-высотным обоснованием. Если старые пункты не сохранились, сетку увязывают с основными осями построенных сооружений.

Рисунок 1.12 – Строительная сетка

Одному из углов сетки присваивают начальные координаты с таким расчетом, чтобы в пределах промышленной площадки, с учетом ее расширения, не иметь отрицательных значений координат. Эти начальные координаты делают кратными длине стороны сетки. При возможности, весьма желательно совмещать начальный пункт с имеющимся на площадке пунктом триангуляции или полигонометрии, что облегчит в дальнейшем переход от системы координат строительной сетки к общегосударственной или местной.

Пунктам строительной сетки присваивают порядковые номера. Довольно удобна и распространена система, при которой обозначение каждого пункта складывается из букв А и В с индексами, причем индекс при букве А показывает число сотен метров по оси абсцисс, а при букве В - по оси ординат (рисунок 1.12).

Так, пункт А6 В8 имеет координаты х=600 м и у=800 м.

При создании строительной сетки расширяющегося предприятия обозначения пунктов и их координаты увязывают с существующей системой.

Одновременно с составлением проекта подготавливают данные для его переноса в натуру.

Рисунок 1.13 – Вынос строительной сетки в натуру

С этой целью намечают исходное направление, от которого затем будет разбиваться вся сетка. Поскольку построению сетки предшествуют изыскательские и съемочные работы, для выноса исходного направления используют пункты их планового обоснования. Наметив два пункта сетки А0В0 и А5В0, составляющие исходное направление А0В05В0 (рисунок 1.13), определяют их координаты графически с плана и, решив обратные геодезические задачи, находят расстояния S1 и S2 и дирекционные углы, по которым вычисляют полярные углы 1 и 2. Это обеспечивает вынос пунктов A0B0 и A5B0 в натуру.

Во избежание грубых ошибок намечают 3-ю точку A0B6 . После их выноса и закрепления на местности, измеряют теодолитом угол, составленный этими двумя направлениями, по отклонению которого от 90 судят о точности работ. Точки A0B0, A5B0 и A0B6 могут располагаться на одной линии. В этом случае контролируют их расположение в одном створе.

При отсутствии пунктов планового обоснования графически определяют элементы для выноса исходных направлений от четких местных контуров. В этом случае контроль особенно важен.

Поскольку координаты точек A0B0, A5B0 и A0B6 определяют с плана графически, точность их выноса в натуру может составлять 0,2 - 0,3 мм в масштабе плана. Однако это не внесет искажений, ибо на эту величину однозначно сдвинется весь комплекс проектируемого сооружения. Только нужно не допускать грубых ошибок, так как при сложном рельефе значительный сдвиг всей промышленной площадки может привести к изменению первоначального проекта вертикальной планировки.

Иначе обстоит дело с выносом в натуру строительной сетки расширяющегося или реконструируемого предприятия, при котором смещение проектируемой части относительно существующей недопустимо. В этом случае строительную сетку следует разбивать, как продолжение прежней. Если знаки старой сетки не сохранились, следует восстановить на местности оси основных существующих цехов и агрегатов, с которыми технологически связаны вновь создаваемые, и уже от них, как от исходных направлений, разбивать строительную сетку. Поскольку из-за ошибок строительных и геодезических работ между восстановленными осями может не в полной мере соблюдаться соответствие (параллельность или перпендикулярность), то для нахождения оптимального положения продольных и поперечных осей может быть применен принцип наименьших квадратов.

1.5.2 – Способы детальной разбивки строительной сетки

От вынесенного и закрепленного в натуре исходного направления и выполняют разбивку всей строительной сетки. Для этого используют один из двух основных способов: осевой способ и способ редуцирования.

При осевом способе (иногда его называют способом точного построения элементов) сетку сразу строят на местности с расчетной точностью путем точного отложения проектных элементов. Найденные точки тут же закрепляют постоянными знаками. Выполнив затем между центрами этих знаков точные угловые и линейные измерения, определяют их фактические координаты. Вследствие накопления ошибок они могут оказаться не кратными длинам сторон сетки. С целью корректирования к головке знака приваривают стальную пластинку 10х10 или 15х15 см. Однако и в этом случае, при больших размерах площадки, даже сдвинув центр к краю пластинки, можно не добиться получения проектных координат, что сведет на нет все достоинства строительной сетки. Поэтому применение осевого способа ограничено. В то же время он обладает тем достоинством, что все пункты сетки сразу же закрепляются постоянными знаками.

Для проектирования и выполнения разбивочных работ удобнее иметь такую сетку, координаты пунктов которой практически не отличаются от проектных, чего можно достичь при построении ее способом редуцирования.

Поскольку способ редуцирования получил наиболее широкое распространение при разбивке строительных сеток вообще, а на больших промышленных площадках исключительно он и используется, дальнейшее рассмотрение строительных сеток в основном на него и ориентировано, хотя основные схемы построения и математической обработки сетей могут быть использованы и при применении осевого способа.

При способе редуцирования сетку вначале выносят в натуру с точностью теодолитного хода и закрепляют временными знаками: деревянными столбами с гвоздем в торце, обозначающим центр; металлическими штырями или трубками на бетоне с накерненными центрами. Затем производят точные измерения, по результатам которых определяют фактическое положение временных пунктов. Из решения обратных задач между проектными и фактическими координатами пункта определяют данные для его смещения (редуцирования) в проектное положение. Найденную точку закрепляют постоянным знаком.

Если временный знак сдвинут незначительно или редуцирование выполняется непосредственно на головке знака, то, зафиксировав на горизонтальном круге теодолита направление с временного знака на постоянный, натягивают от центра временного знака в коллимационной плоскости теодолита струну или леску, фиксирующую это направление на местности, и вдоль нее откладывают линейный элемент редукции.

Редуцирование - сравнительно простая операция, но чрезвычайно ответственная, так как ошибки приводят к неправильной установке постоянных знаков. Поэтому, лишь отредуцировав несколько знаков и проконтролировав их расположение в створе (или под прямыми углами), переходят к установке постоянных знаков. Для этого поступают следующим образом.

Рисунок 1.14 – Схема установки постоянных знаков

Колышками 1 - 2 и 3 - 4 с гвоздиками в центрах торцов закрепляют два взаимно перпендикулярных створа, пересекающихся над точкой А12В6 (рисунок 1.14). После этого роют шурф или бурят скважину для постоянного знака. Установив его, натягивают между гвоздиками в торцах кольев струну или леску. Под пересечением створов 1 - 2 и 3 - 4 устанавливают центр постоянного знака. После бетонирования или трамбовки земли знаку дают несколько дней устояться (в случае бетонирования до полного схватывания бетона). Затем повторяют редуцирование и кернят центр пункта.

Способ редуцирования является основным при построении больших строительных сеток. Но он имеет существенный недостаток - до установки постоянных знаков возникает опасность повреждения временных, а постоянные знаки можно устанавливать только после того, как выполнены точные измерения, уравнены их результаты и вычислены элементы редукции. Поэтому работу нужно организовывать так, чтобы свести к минимуму разрыв во времени между установкой временных и постоянных знаков. Этого можно достигнуть, лишь быстро выполнив точные измерения и уравняв их результаты.