Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по Численным методам.doc
Скачиваний:
98
Добавлен:
03.11.2018
Размер:
2.12 Mб
Скачать

Уточнение решения (итерационный метод).

Решения, получаемые с помощью прямых методов обычно содержат погрешности. В ряде случаев, особенно если объём системы велик, эти погрешности могут быть значительными.

Рассмотрим итерационный процесс позволяющий уточнить решения на следующем итерационном шаге. Пусть решается система

……………………………

Пусть на k-ом итерационном шаге получено решение в виде ,,…,, где k-это номер итерационного шага.

Подставим полученное решение в левые части уравнений системы, результат вычислений этих уравнений обозначим ,,.

В результате получим систему

……………………………

Вычтем из каждого уравнения 1-ой системы уравнение 2-ой системы и получим систему вида

……………………………

Отсюда

Это невязка для уравнений с соответствующим номером.

Теперь мы получаем систему решением, которой будут соотношения уточняющие решение.

………………..

Преимуществом этого метода является то, что на каждом итерационном шаге решается система с одной и той же матрицей. Это позволяет оптимизировать вычислительный процесс, строить экономичные алгоритмы.

Метод 17

Метод Гаусса-Зейделя.

Является одним из самых распространённых итерационных методов. Это связано с простотой метода. Перепишем уравнение системы, выразив из первого уравнения, - из второго и т.д.

Получится система, которая имеет вид:

……………………………………….

Перед записью этой системы необходимо произвести проверку уравнений таким образом, чтобы диагональные элементы не были равны нулю, а ещё лучше, что бы на диагонали были максимальные элементы.

Сначала задаётся начальное приближение и на 1-ом итерационном шаге с помощью 1-го уравнения находится

и т.д. до .

Считаем пока не достигнем, заданной точности. Для сходимости итерационного процесса достаточно чтобы модули диагональных коэффициентов для каждого уравнения системы были не меньше суммы модулей всех не диагональных элементов.

, для любого i

И, по крайней мере, хотя бы в одном уравнении модуль должен быть большим.

Тема №5 Решение систем не линейных уравнений.

Метод 18

Простой Итерации

Пусть требуется найти решение системы из n уравнений с t неизвестными.

…………………..

В общем случае прямых методов решения систем не линейных уравнений нет. Единственным методом решения является итерационный.

Самый простой метод решения – это метод простой итерации. Преобразуем исходную систему к такому виду:

…………………..

Это преобразование можно произвести всегда, причем различным образом.Затем следует задать начальное приближение:

И тогда из 1-го уравнения мы получим:

…………………..

При использовании метода простой итерации успех во многом зависит от удачного выбора начального приближения (чем дальше начальное приближение от истинного значения, тем больше вероятность расхождения итерационного процесса).

Для системы существует область сходимости, если начальное приближение попадает в эту область, то итерационный процесс будет сходиться, не попадает – расходиться.

Чем больше число неизвестных, тем меньше область сходимости, тем труднее получить решение на промежутке т.к. обеспечить сходимость метода простой итерации не всегда удаётся.

Метод 19