Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по Численным методам.doc
Скачиваний:
98
Добавлен:
03.11.2018
Размер:
2.12 Mб
Скачать

Тема №4 Решение систем линейных уравнений.

Системы линейных алгебраических уравнений (СЛАУ) в научно-исследовательской инженерной практике встречаются весьма часто. К решению систем линейных уравнений сводится многочисленные практические задачи с использованием численных методов.

Например:

Коэффициенты сплайнов находятся путем решения СЛАУ. К СЛАУ приводят уравнения частных производных.

Задачи по нахождению собственных значений также приводят к СЛАУ. Таким образом, решение СЛАУ – одна из самых распространенных и важных задач вычислительной математики.

Запишем СЛАУ в общем виде:

- номер уравнения

- номер неизвестной, на которую умножается коэффициент.

Коэффициенты образуют матрицу

Матрица системы столбец неизвестных величин столбец правых частей

Введя эти величины, мы можем записать СЛАУ в виде матричного решения

Важнейшей характеристикой квадратной матрицы является её определитель()

Число возможных значений

В курсе высшей математики показывается, что система СЛАУ имеет единственное решение, если определитель системы не равен нулю. В этом случае решение может быть найдено с помощью формул Крамера:

,

где - определитель матрицы, которая получается после исключения в матрице А -го столбца и его замены столбцом свободных членов.

Если определитель системы равен нулю, то в этом случае матрица называется вырожденной, а система либо не имеет решения, либо имеет бесконечное множество решений. Для некоторых систем решение оказывается очень чувствительным к малым погрешностям в исходных данных . Такие системы называются плохо-обусловленными. Определитель плохо-обусловленных систем близок к нулю. При численных вычислениях всегда надо иметь ввиду эту особенность систем линейных уравнений.

Существуют методы улучшения обусловленности систем. Некоторые некорректные задачи приводят к плохо обусловленным системам уравнений. Эти задачи могут иметь важное практическое значение. Существуют методы решения таких задач.

Методы решения СЛАУ делятся на 2 группы:

1) Прямые

используют готовые формулы для вычисления неизвестных, эти методы наиболее универсальны, пригодны для решения широкого класса СЛАУ. Но они обладают недостатками: они требуют хранения в оперативной памяти сразу всей матрицы. Существенным недостатком прямых методов является накапливание погрешности в процессе решения. Это особенно опасно для больших систем, а также для плохо-обусловленных , поэтому прямые методы используют обычно если нескольких сотен.

2) Итерационные

в итерационных методах решение находят путем последовательных приближений. Накапливание погрешности не происходит, и с помощью них решают систему с большим числом уравнений и для решения плохо-обусловленных систем. Однако сходимость итерации может быть очень медленной. Поэтому время счета может быть очень большим. Другим недостатком является то, что с их помощью решается ограниченный класс уравнений.

Например:

Уравнений с преобладанием диагональных элементов, либо системы со слабо заполненными матрицами.

Метод Крамера относится к прямому методу, однако на практике метод Крамера практически никогда не используется, так как он требует большого объёма вычислений. Оценим объём вычислений с помощью метода Крамера. Для применения этого необходимо вычислить определитель, а для вычисления каждого определителя необходимо сделать произведений, а число полученных слагаемых . Значит, число арифметических операций будет с ростом резко возрастает при

Наиболее распространенным среди прямых методов является метод Гаусса.

Метод 14