Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекция 3. Валентные возможности атомов

.pdf
Скачиваний:
69
Добавлен:
28.03.2016
Размер:
551.77 Кб
Скачать

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Лекция 3. Кто на что способен или Валентные возможности атомов.

1. Строение Периодической Системы

Каждый из присутствующих в аудитории обладает яркой индивидуальностью, особенным талантом. Точно также элементы, собравшиеся вместе в Периодической системе, хоть и похожи порой один на другой, но все-таки имеют свои особенности: сильные и слабые стороны.

Начнем с того, что элементов очень много – и хорошо бы нам их как-нибудь называть, чтобы не запутаться. Давайте соберем в группы близкие по свойствам элементы –

электронные аналоги.

Чтобы не запутаться, сперва в два ряда «сложим» f-элементы: лантаноиды и актиноиды.

Затем расположим группы так, чтобы в элементах первой группы был 1 валентный электрон,

у элементов второй группы – 2 валентных электрона и т.д.

У нас получится 8 групп, в каждой из которых образуется подгруппы: в одной окажутся s- или p-элементы, а в другой – d-элементы.

Например, 1А группа: H, Li, Na, K, Rb, Cs, Fr и 1Б группа: Cu, Ag, Au, Rg

Соберем из групп Периодическую систему. Поскольку периодом называется время между двумя повторяющими событиями, расстояние между двумя соседними электронными аналогами (горизонтальный ряд Периодической системы) будет также называться периодом.

Наконец, дадим названия группам

Обозначение

Конфигурация

Название

 

 

 

IA

ns1

щелочные металлы и водород

IIA

ns2

щёлочноземельные металлы

IIIA

ns2np1

 

IVA

ns2np2

 

VA

ns2np3

пниктогены

VIA

ns2np4

халькогены

VIIA

ns2np5

галогены

VIIIA

ns2np6

инертные газы

 

6s2 5d1 4f x

лантаноиды

 

7s2 6d1 5f x

актиноиды

1

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Побочные подгруппы будем назвать по первому их элементу: «подгруппа меди», «подгруппа цинка».

IIB

ns2 (n-1)d10

подгруппа Zn

VIB

ns1 (n-1)d5

подгруппа Cr

Попробуем найти в нашей системе металлы.

Оказывается, если от бора B к астату At провести диагональ, то металлы главных подгрупп занимают левый нижний угол, а неметаллы – правый верхний. Такие металлы назовем непереходными, т.е. непереходные элементы – это металлы главных подгрупп.

Все элементы побочных подгрупп и f-элементы – переходные элементы, или переходные металлы.

Учитывая, что в природе ничтожные количества (или совсем нет) элементов с Z > 92,

назовем такие элементы трансурановыми.

Теперь собственно, можно начинать.

2. Валентные возможности атомов.

Итак, наш вопрос на сегодня: как атомы образуют молекулы и почему эти молекулы

не рассыпаются?

Логично предполагать, что если атомы держатся вместе, значит, их что-то связывает.

Такое состояние назовем химической связью. Поскольку строение атома для нас

секрета не представляет, то остановимся на самом простом возможном объяснении:

Химическая связь – особый тип взаимодействия между атомами в химических

соединениях, основанный на взаимодействии положительно заряженных ядер атомов

одного элемента с отрицательно заряженными электронами другого элемента.

2

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Проводя аналогию с законом всемирного тяготения, ядро атома, как черная дыра, пытается

притянуть любой электрон, попавший в его сферу притяжения.

Типы химической связи. Ковалентная связь.

Как Вы знаете, любое животное ищет себе пару. И электрон не исключение: для того,

чтобы образовать прочную химическую связь, нужна пара электронов с противоположно направленными спинами.

Пусть есть 2 атома – A и B, которые взаимодействуют между собой.

В зависимости от способа взаимодействия электроны могут оказаться либо «в фазе»

(одинаковый знак волновой функции e1 и e2), так что образуется химическая связь,

либо «в противофазе» (разные знаки волновых функций), приводящая к отталкиванию атомов друг от друга. В первом случае возникает выигрыш в энергии (зеленый уровень энергии V располагает ниже, а величина этого выигрыша точно равна энергии образующейся связи). Во втором случае возникает проигрыш в энергии (красный уровень X).

Представьте себе, что Вы катите шарик. Если он катится под горку – Вы не прикладываете никаких усилий – и шарик закатывается в ямку. Напротив, Вы в поте лица толкаете шарик в горку, но, стоит Вам его отпустить

– и шарик скатывается к её подножию.

3

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Что происходит при образовании связи с электронным облаком?

Для простоты картинки возьмем сферически симметричные s-АО (l = 0).

1. Если облака (серые шарики) складываются, возникает картинка внизу – есть область перекрывания, в которой электронная плотность «удвоилась», а на остальной области она совпадает либо с плотностью электронного облака атома А, либо с плотностью электронного облака атома B.

В этом случае увеличенная электронная плотность подобно котлете в гамбургере связывает

между собой положительно заряженные ядра атомов А и Б.

2. Если же облака (серые шарики) вычитаются, то возникает картинка сверху – посередине полное взаимоуничтожение, а на краях – плотность электронного облака атома до взаимодействия.

В этом случае электронной плотности между ядрами нет – и беспощадный закон Кулона предписывает атомам разлететься в разные стороны.

Итак, ковалентная химическая связь возникает при обобществлении неспаренных электронов с противоположными спинами, изначально принадлежавшим разным атомам.

При этом вступающие в ковалентную химическую связь элементы как бы обмениваются электронами, поэтому такой механизм (способ) образования

ковалентной связи получил название – обменный.

А + B = A B

А· + ·B = A : B

(обобществление электронов, образование общей электронной пары)

А· + ·B = A – B

(образование химической связи,

черточка между А и B обозначает химическую связь и называется валентным штрихом)

4

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Таким образом, для образования ковалентной химической связи по обменному

механизму атомы должны иметь неспаренные электроны

 

Примеры: водород 1H 1s1; кислород 8O … 2s 2 2p4.

 

 

 

 

 

 

1).

 

 

 

образование молекулы H2

 

 

 

 

 

 

 

 

 

 

 

 

из двух атомов водорода

 

 

 

 

 

2).

 

 

 

образование молекулы H2O

 

 

 

 

 

 

 

 

из двух атомов водорода

 

 

 

 

и атома кислорода

 

 

 

 

 

Например, при образовании молекулы водорода каждый атом предоставляет по 1e – получается общая (связывающая) пара электронов.

При образовании молекулы воды, на 1 атом кислорода, у которого

2 неспаренных электрона, требуется 2 атома водорода, у каждого из которых по 1e

образуются 2 связи O – H. При этом атом кислорода располагает также двумя парами электронов (на 2s и на 2p-подуровне), которые в реакции не участвуют. Такие пары называются неподеленными электронными парами.

Изображение у атомов электронов валентного уровня называется структурами Льюиса. При этом рекомендуется электроны разных атомов изображать разными символами, например, ·, *, , , ♥ и т.п.

Изображение порядка связывания атомов между собой получило название

структурных формул. При этом каждая пара электронов на письме заменяется валентным штрихом.

Структурные формулы веществ: H – H, H – O – H, O = O.

5

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Количество ковалентных связей, которое образует данный элемент, называется

ковалентностью, или валентностью данного элемента.

Валентность обозначается римскими цифрами.

Таким образом, на данном этапе валентность элемента определяется количеством неспаренных электронов, которые могут принять участие в образовании ковалентных связей.

Валентные возможности элементов.

1.Углерод.

В основном состоянии электронная конфигурация атома углерода 1s2 2s22p2, из которых валентными являются 2s и 2p-электроны.

В таком состоянии атом углерода способен образовать 2 ковалентные связи по обменному

механизму.

Однако на практике стабильных соединений двухвалентного углерода не существует.

Вследствие небольшой разницы между 2s и 2p-

подуровнем атом углерода при небольших затратах энергии способен переходить в первое

возбужденное состояние (обозначается C*).

В таком состоянии атом углерода способен

образовать 4 ковалентные связи по обменному механизму.

Примерами стабильных молекул, в которых валентность углерода равна IV,

могут служить соединения с водородом, кислородом, …

6

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

 

 

H

O

 

C

 

O

H

 

C

 

N

 

 

O

H

 

 

 

 

 

 

 

 

 

 

C

 

H

 

 

 

 

H

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

H

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Оксид углерода (IV),

Циановодород,

Муравьиная

метан

 

 

 

 

 

Углекислый газ

Синильная кислота

кислота

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Валентность углерода во всех соединениях равна IV, водорода – I, кислорода – II.

Ацетилен H–C ≡C–H – горючий газ, который используется для получения высокотемпературного пламени, например, при сварке.

Вывод: при наличии такой возможности (вакантных орбиталей) атомы способны распаривать свои валентные электроны с тем, чтобы увеличить свою ковалентность.

Донорно-акцепторный механизм образования ковалентной связи.

Математика – великая сила. Как следует из вышеизложенного, для образования химической связи требуется 2 электрона (общая электронная пара).

Очевидно, два электрона можно получить:

Однако существует и другое решение!

2 = 1 + 1

2 = 2 + 0

Донорно-акцепторный механизм образования ковалентной связи – способ образования ковалентной связи, при которой один атом (донор) предоставляет для образования связи пару электронов, а другой атом (акцептор) – вакантную (незанятую)

орбиталь.

7

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Пример. Строение молекулы монооксида углерода (оксид углерода(II), угарный газ)

В молекуле монооксида углерода атомы углерода и кислорода связаны двумя ковалентными связями, образованными по обменному механизму.

Однако, поскольку у атома углерода есть незаполненная орбиталь на 2p-подуровне, а у атома кислорода – неподеленная пара электронов, то образуется третья ковалентная связь по донорно-акцепторному механизму.

На письме донорно-акцепторный механизм изображают стрелкой, направленной от

атома-донора к атому-акцептору пары электронов.

Правильная структурная формула молекулы монооксида углерода.

CO

Валентность кислорода III, валентность углерода III.

Тройная связь между атомами кислорода и углерода подтверждается значением

энергии связи углерод-кислород (значение ближе к энергии тройной связи, чем к

энергии двойной связи), данными спектральных методов анализа.

2. Валентные возможности атомов. Азот.

Атомы азота, кислорода и фтора существенно отличаются от своих электронных

аналогов вследствие отсутствия энергетического d-подуровня.

Электронная конфигурация атома азота 7N 1s2 2s22p3.

Валентные электроны 2s22p3 – 3 неспаренных электрона и 1 электронная пара.

Таким образом, для азота следует ожидать валентность III.

 

H

N

 

N

 

 

 

 

 

 

 

Пример: Азот N2 или аммиак NH3. В. N = III, В. H = I.

 

H N H

 

 

Если отразить строение аммиака посредством структуры

Льюиса, то

становится

очевидным, что кроме трёх связывающих пар, у атома азота располагается

1 неподелённая пара электронов (2s2).

8

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

Следовательно, атом азота способен выступать в качестве донора пары электронов.

В простейшем случае в роли акцептора выступает ПРОТОН: нам данный пример знаком по реакции аммиака с кислотами с образованием солей аммония.

 

H

+

+

H

H

H H

N

H3N: + H

 

 

= NH4

N

 

H N H

H

H

 

H

H

 

 

 

 

ИЛИ

Обратите внимание:

1.Акцептор должен иметь вакантную орбиталь (в данном случае атом водорода потерял электрон и располагает вакантной 1s-АО)

2.В ходе химической реакции заряд сохраняется (закон сохранения заряда!).

Грубейшей ошибкой является отсутствие заряда, так как атом азота не способен образовать по обменному механизму 4 связи.

3. Строение катиона аммония изображается в виде трех ковалентных связей N – H,

образованных по обменному механизму, обозначенных валентными штрихами, и

одной ковалентной связи, образованной по донорно-акцепторному механизму,

обозначенной стрелкой от атома азота к атому водорода. Положительный заряд должен быть изображен или на атоме азота (обычно над атомом), или частица NH4

заключается в квадратные скобки и за скобками рисуют знак «+».

4. Максимальная валентность азота равна ЧЕТЫРЕМ – у атома всего 4 АО, три из которых содержат неспаренные электроны, а одна – электронную пару. Следующий энергетический уровень (3s) располагается слишком далеко, чтобы использовать его для образования связи, по поэтому атом азота не в состоянии образовать валентность V.

О более сложных случаях образования ковалентных связей атомом азота Вы узнаете немного позже.

9

Лекция 3. Валентные возможности атомов. Ковалентная химическая связь

3. Валентные возможности атомов. Сера.

Электроны валентного уровня атома серы в основном состоянии имеют конфигурацию

16S … 3s 2 3p4 – 2 электронных пары и 2 неспаренных электрона.

Данная электронная конфигурация

 

 

соответствует валентности серы,

S

 

равной II.

 

H

H

Например, в молекуле сероводорода

В. S = II, В. H = I.

H – S – H

 

 

 

Вывод (правило октета)1: при образовании химических соединений атомы элементов стремятся дополнить свою электронную конфигурацию до наиболее стабильной,

ns2np6, октета электронов, соответствующей инертному газу.

Например, в молекуле сероводорода атом серы образует октет электронов за счет двух связывающих пар с атомами водорода и двух неподелённых электронных пар

Правило октета НЕ является ОБЯЗАТЕЛЬНЫМ, непреложным – существует бесчисленное множество соединений, в молекулах которых правило октета не соблюдается для того или иного элемента, однако оно правильно предсказывает общую тенденцию к образованию соединений подобной стехиометрии.

Для соединений d-элементов существует соответствующее правило восемнадцати электронов, так как именно такое количество электронов соответствует полностью завершенной ns2 (n-1)d10 np6 – электронной оболочке.

1 Дублет – 2, триплет – 3, квартет – 4, квинтет – 5, секстет – 6, септет – 7, октет – 8. Таким образом, правило октета – это правило восьми электронов.

10