Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Молекулярная биология клетки Глава 2

.pdf
Скачиваний:
153
Добавлен:
19.03.2016
Размер:
7.06 Mб
Скачать

ГБОУ ВПО «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙУНИВЕРСИТЕТ» МИНИСТЕРСТВАЗДРАВООХРАНЕНИЯ РФ

КАФЕДРА МЕДИЦИНСКОЙ БИОЛОГИИ И ГЕНЕТИКИ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ

Часть 2. Структурная организация эукариотической животной клетки. Строение и функция плазматической мембраны

Учебное пособие

Казань 2015

УДК 611:018(075.8) ББК 28.05+28.06

Печатается по решению Центрального координационно-методического совета

Казанского государственного медицинского университета.

Авторы:

Исламов Р.Р., Волков Е.М., Кошпаева Е.С., Пахалина И.А., Колочкова Е.В., Бойчук Н.В.

Под редакцией д.м.н. профессора Исламова Р.Р.

Рецензенты:

Заведующий кафедрой гистологии, цитологии и эмбриологии КГМУ проф. Челышев Ю.А.

Заведующая кафедрой гистологии, цитологии и эмбриологии РНИМУ им. Н.И. Пирогова проф. Глинкина В.В.

Молекулярная биология клетки. Часть 2. Структурная организация эукариотической животной клетки. Строение и функция плазматической мембраны. Учебное пособие, переработанное и дополненное/ Исламов Р.Р., Волков Е.М., Кошпаева Е.С., Пахалина И.А., Колочкова Е.В., Бойчук Н.В. – Казань: КГМУ, 2015. – 42 с.

Учебное пособие составлено в соответствии с Государственным образовательным стандартом высшего профессионального образования (ФГОС) и типовой Учебной программой по дисциплине «Биология». Во 2 части Учебного пособия «Структурная организация эукариотической животной клетки. Строение и функция плазматической мембраны» изложены цели и задачи изучения данной темы, указаны формируемые компетенции, приведён теоретический обзор, изложенный в лаконичной и рубрицированной форме и имеющий медицинскую направленность. Практические навыки включают идентификацию клеточных органелл по микропрепаратам разных клеточных типов и лабораторную работу по изучению осмотических свойств растительной клетки. Пособие содержит типовые тестовые вопросы, вопросы самоконтроля и справочник терминов.

Учебное пособие предназначено для студентов младших курсов медицинских факультетов и медицинских вузов.

© Казанский государственный медицинский университет, 2015

Часть 2

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ЭУКАРИОТИЧЕСКОЙ ЖИВОТНОЙ КЛЕТКИ. СТРОЕНИЕ И ФУНКЦИЯ ПЛАЗМАТИЧЕСКОЙ МЕМБРАНЫ

Целью публикации настоящего учебного пособия является систематизация знаний о компартментном строении эукариотической животной клетки. В учебное пособие включена новейшая информация о молекулярной организации клеточной мембраны и основных механизмах транспорта веществ через плазмолемму, которая не представлена в учебниках, используемых студентами.

Задачей учебного пособия является ознакомление студентов с современными представлениями о молекулярном строении и функции органоидов. Сформировать представление о важности механизмов переноса веществ через клеточные мембраны для нужд практической медицины. С помощью схематических изображений и рисунков способствовать изучению микропрепаратов и зарисовать клеточные органоиды.

Формируемые компетенции:

Лечебный факультет, дисциплина «Биология» — ОК1, ПК31

Педиатрический факультет, дисциплина «Биология» — ОК1, ПК31

Стоматологический факультет, дисциплина «Биология» — ОК1, ПК26

Медико-профилактический факультет, дисциплина «Биология, экология» — ОК7, ПК6

Фармацевтический факультет, дисциплина «Биология» — ОК1, ПК48

Медико-биологический факультет, дисциплина «Биология» — ОК1, ПК27

Студент должен знать:

1.Общий принцип организации клеток эукариот.

2.Характеристику следующихструктурных компонентов эукариотической клетки: хлоропласт, митохондрия, гладкая эндоплазматическая сеть, шероховатая эндоплазматическая сеть, комплекс Гольджи, ли-

4 зосома, вакуоль, цитоскелет, рибосома, центросома, протеосома,

апоптосома, жгутик, ресничка, микроворсинка.

• Характеристика структурных компонентов включает в себя: название органоида, размеры, форма, строение, молекулярный состав, локализация в клетке, функция и принцип работы, взаимосвязь с другими структурными компонентами клетки, место и способ образования в клетке.

3.Классификацию и функции включений клетки.

4.Общие принципы строения клеточных мембран согласно жидкостномозаичной модели.

5.Роль мембранных липидов и белков в выполнении функций мембран.

6.Характерные признаки и механизмы следующих видов транспорта веществ через цитоплазматическую мембрану: простая диффузия, облегченная диффузия (унипорт, симпорт, антипорт), активный транспорт.

7.Способы экзоцитоза (конститутивный, регулируемый) и эндоцитоза (пиноцитоз, фагоцитоз, опосредованный рецепторами эндоцитоз).

Студент должен уметь:

1.Находить под микроскопом и зарисовывать изучаемые органеллы растительной и животной клетки.

2.Идентифицировать и описывать по микропрепаратам, слайдам, микрофотографиям и рисункам клеточные органеллы.

3.Изготавливать временные препараты.

4.Самостоятельно проводить эксперименты с растворами разной осмотической силы на растительных клетках.

5.Вести протокол экспериментальной работы.

Студент должен владеть:

1.Медико-функциональным понятийным аппаратом и специальными терминами.

2.Навыками изготовления временных препаратов.

3.Навыками применения на практике знаний об осмотических свойствах клетки.

4.Знаниями о проницаемости плазматической мембраны с позиции применения лекарственных препаратов.

5.Знаниями о рецепторном аппарате клеток с позиции воздействия лекарственного вещества на функционирование клетки через специфические рецепторы.

5

Оснащение занятия:

1.Мультимедийная презентация по теме.

2.Таблицы:

клеточные органеллы

плазматическая мембрана

виды трансмембранного транспорта

экзоцитоз и эндоцитоз

2.Микроскопы:

прямой световой монокулярный

прямой световой бинокулярный

3.Микропрепараты:

гранулярная эндоплазматическая сеть в перикарионе двигательного нейрона

комплекс Гольджи в перикарионе чувствительного нейрона

миофибриллы скелетного мышечного волокна

митохондрии скелетного мышечного волокна

липидные включения в бурой жировой клетке

липидная вакуоль в белой жировой клетке

4.Студенческий лабораторный набор для выполнения эксперимента, раскрывающего механизмы транспорта воды через плазматическую мембрану.

Хронологическая карта занятия:

1.Организационная часть.

2.Письменный тестовый контроль.

3.Разбор теоретического материала.

4.Самостоятельная работа студентов и текущий контроль за выполнением заданий.

5.Проверка выполненных работ в тетрадях.

6.Установка задания для подготовки к следующей теме.

6

ТЕОРЕТИЧЕСКИЙОБЗОР

ОБЩИЕПРИНЦИПЫСТРОЕНИЯЖИВОТНОЙ КЛЕТКИ

Эукариоты могут быть как одноклеточными, так и многоклеточными организмами. Согласно клеточной теории Маттиаса Шлейдена и Теодора Шванна (1839 г.), клетка является основной структурной единицей многоклеточного организма. Существенное дополнение в клеточную теорию внёс Рудольф Вирхов (1858 г.), уточнив происхождение клеток: «клеткапроисходит только от клетки» («omniscellula e cellula»). При всём многообразии клетки эукариот построены и функционируют одинаковым образом, что подчёркивает их общее происхождение. Эукариотическая клетка состоит из трёх основных компартментов: плазматическая мембрана, ядро и цитоплазма. Жидкая часть цитоплазмы (цитозоль) составляет около половины объёма клетки. Цитозоль содержит органеллы, цитоскелет, функциональные белковые макрокомплексы, включения (рис. 2-1). Клеточные органеллы (органоиды) — обязательные метаболически активные элементы в цитоплазме эукариот. Они имеют специализированную структуру для выполнения конкретной функции. Различают мембранные и немемебранные органоиды. Клетки прокариот подобных органоидов не име-

ют.

Митохондрии — двумембранные образования, имеющие собственную ДНК, предположительно возникли из прокариот после объединения с эукариотическими клетками в результате эволюции и последующего с ними сосуществования (симбиоза). Обеспечивают синтез АТФ за счет реакций окислительного фосфорилирования. Митохондрии контролируют внутриклеточное содержание ионов кальция, обеспечивают образование тепла (в бурых адипоцитах), а также участвуют в зап-

рограммированной (регулируемой) гибели клеток.

Рибосомы — немембранные двухсубъединичные (малая СЕ и большая СЕ) образования, состоящие из рРНК и белков и обеспечивающие этап трансляции синтеза белковых молекул при участии иРНК и тРНК. Малая СЕ связывается с мРНК и активированными тРНК. Пептидилтрансфераза в большой СЕ катализирует образование пептидных связей и присоединение аминокислот к растущей полипептидной цепи. Рибосомы могут формировать скопления (агрегаты) полисомы, или полирибосомы. Рибосомы подразделяют на свободные и связанные с мембранами эндоплазматической сети и наружной ядерной мембраной. Свободные рибосомы синтезируют белки для самой клетки (конститутивный синтез), а связанные рибосомы — на экспорт.

7

Рис. 2-1. Органеллы и включения животной клетки [из Fawcett D.W., 1986].

Гранулярная (шероховатая) эндоплазматическая сеть (гранулярный ретикулум) — одномембранный органоид, представлен системой плоских мембранных цистерн. На наружной поверхности мембран расположены рибосомы, придающие ему гранулярный вид. Принимает участие в формировании пространственной (трёхмерной) структуры (укладки) вновь синтезированных белков и осуществляет посттрансляционный контроль качества белка.

Гладкая эндоплазматическая сеть (гладкий ретикулум) — одномембранный органоид, представлен системой анастомозирующих мембранных каналов, пузырьков и трубочек. Обеспечивает синтез липидов и стероидных гормонов, депонирует ионы кальция, обезвреживает некоторые токсические продукты (детоксикация).

8

Комплекс Гольджи — одномембранный органоид, образован стопкой из 3–10 уплощённых и слегка изогнутых цистерн с расширенными концами. Цистерны комплекса Гольджи образуют три основных компартмента: цис-компартмент, промежуточный компартмент и транс-ком- партмент. Цистерны накапливают и преобразуют незрелые белки (посттрансляционная модификация, сборка сложных белковых молекул), обеспечивают сортировкуи упаковку белковых молекул. Продукты комплекса Гольджи разделяются на три потока, которые направляются в плазматическую мембрану (интегральные мембранные белки), накапливаются в эндосомах (ферменты внутриклеточного пищеварения) или выделяются из клетки (секреторный продукт).

Окаймлённые везикулы (пузырьки) — одномембранные пузырьковидные образования, окружены (окаймлены) белковой оболочкой, прилежащей к наружной поверхности мембраны пузырька; участвуют во внутриклеточной сортировке, накоплении и транспортировке белков. Окружённые клатрином пузырьки имеют многоугольный каркас из белка клатрина и транспортируют вещества, поступающие в клетку путём опосредованного рецепторами эндоцитоза, а также белки из транскомпартмента комплекса Гольджи. Не содержащие клатрин пузырьки имеют оболочкуиз коатомера — высокомолекулярного белкового комплекса. Такие пузырьки транспортируют белки из гранулярной эндоплазматической сети в комплекс Гольджи, из одной цистерны комплекса Гольджи в другую, из комплекса Гольджи в плазматическую мембрану.

Лизосомы — одномембранные структуры, образуются путём слияния перинуклеарных эндосом, содержащих лизосомные гидролазы и лизосомные мембранные белки, с везикулами, подлежащими деградации (периферической эндосомой, фагосомой или аутофагоцитозной вакуолью).

Перинуклеарные эндосомы образуются при слиянии везикул, содержащих лизосомные гидролазы после их синтеза в гранулярной эндоплазматической сети и процессинга в комплексе Гольджи, и везикул, в мембрану которых встроены специфические лизосомные мембранные белки.

Периферические эндосомы образуются в результате эндоцитоза.

Мультивезикулярные тельца образуются при слиянии перинуклеарной и периферической эндосом.

Фаголизосома образуется при слиянии перинуклеарной эндосомы и фагосомы.

Аутофаголизосома образуется при слиянии перинуклеарной эндосомы и аутофагоцитозной вакуоли, содержащей подлежащие деградации эндогенные молекулы и органеллы.

9

Остаточные тельца — лизосомы любого типа, содержащие непереваренный материал (липофусцин, гемосидерин).

Пероксисомы — одномембранные органеллы, пузырьки размером 0,1–1,5 µм с электроноплотной сердцевиной. В составе мембраны органеллы находятся специфичные белки — пероксины, а в матриксе — более 40 ферментов, катализирующих анаболические (биосинтез жёлчных кислот) и катаболические (β окисление длинных цепей жирных кислот, H2О2 зависимое дыхание, деградация ксенобиотиков) процессы.

Центросома (клеточный центр) — немембранная структура, которая обычно находится рядом с ядром и играет важную роль в транспортировке хромосом при делении ядра клетки. Центросома включает две центриоли и перицентриольный матрикс (цитоплазма, содержащая молекулы тубулина). Центриоль имеет формуцилиндра диаметром 150 нм

идлиной 500 нм; стенка цилиндра состоит из 9 триплетов микротрубочек. Растущие микротрубочки (–)-концами связаны с центросомой, а их

(+)-концы в виде лучей радиально направлены в цитоплазму (астральные микротрубочки).

Цитоскелет — трёхмерная сеть микротрубочек (белок тубулин), промежуточных филаментов (белки десмин, виментин, кератин, глиальный фибриллярный кислый белок, белки нейрофиламентного триплета) и микрофиламентов (белок актин). Цитоскелет определяет форму клетки

ивыполняет множество других функций: внутриклеточный транспорт, межклеточная адгезия, подвижность клеток, образование цитоплазматических выростов (микроворсинки, стереоцилии, реснички, киноцилии).

Миофибрилла — немембранная сократительная органелла, состоит из упорядоченно упакованных тонких (актиновых), толстых (миозиновых) нитей и ассоциированных с ними вспомогательных белков, образующих актомиозиновый хемомеханический преобразователь и обеспечивающих сокращение миофибрилл в скелетных мышечных волокнах и сердечных мышечных клетках (кардиомиоцитах).

Аксонема — немембранная сократительная органелла — основной структурный элемент реснички и жгутика. Аксонема состоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. Обладающий АТФазной активностью белок динеин — компонент тубулин-динеинового хемомеханического преобразователя — входит в состав ручек, связанных с периферическими микротрубочками. Матрицей для организации аксонемы служит базальное тельце — аналог центриоли.

Протеосома — функциональный макрокомплекс нелизосомных мультикаталитических протеиназ, широко распространённых в цитоп-

10

лазме клеток эукариот. Протеосомы регулируют деградацию внутриклеточных белков, вовлечённых в различные клеточные процессы (размножение, рост, дифференцировка, функционирование), а также удаление повреждённых, окисленных и аберрантных белков.

Апоптосома — гептамерная колесоподобная структура функциональный макрокомплекс, активирующий каспазы при апоптозе (регулируемой гибели клеток).

Включения образуются в результате жизнедеятельности клетки. Это могут быть пигментные включения (меланин), запасы питательных веществ и энергии (липиды, гликоген, желток), продукты распада (гемосидерин, липофусцин).

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Молекулярный состав

Все биологические мембраны имеют общие структурные особенности и свойства. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, плазматическая мембрана — жидкая динамическая система с мозаичным расположением белков и липидов. Согласно этой модели, белковые молекулы плавают в жидком фосфолипидном бислое, образуя в нём своеобразную мозаику, но поскольку бислой обладает определённой текучестью, то и сам мозаичный узор не жестко фиксирован; белки могут менять в нем свое положение. Толщина плазматической мембраны — примерно 7,5 нм (рис. 2-2).

Основу мембраны составляет билипидный слой; оба липидных слоя образованы фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещён на остаток фосфорной кислоты. Участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой; участок, в котором находятся остатки жирных кислот — гидрофобным хвостом. Жирные кислоты в составе гидрофобных хвостов бывают насыщенными и ненасыщенными. В молекулах ненасыщенных кислот имеются «изломы», что делает упаковку бислоя более рыхлой, а мембрану — более текучей.В мембране молекулы фосфолипидов расположены строго ориентировано в пространстве: гидрофобные концы молекул обращены друг к другу (от воды), а гидрофилные головки наружу (к воде). Липиды составляют до 45% массы мембран.

Холестерин имеет чрезвычайно важное значение не только как компонент биологических мембран; на основе холестерина происходит синтез стероидных гормонов — половых, глюкокортикоидов, мине-