Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ортодонтия хорошилкина

.pdf
Скачиваний:
7263
Добавлен:
10.03.2016
Размер:
13.59 Mб
Скачать

Глава 7

ФУНКЦИОНАЛЬНАЯ ДИАГНОСТИКА

Мягкие ткани зубочелюстной системы состоят из кожи, подкожной жировой клетчатки, слизистой оболочки полости рта, подслизистого слоя, жевательных и мимических мышц, связок, сосудисто-нервных пучков.

7.1. Исследование кожи, слизистой оболочки и пародонта

Исследования проводят в условиях диагностической лаборатории. Гипопластические и дистрофические изменения кожи и слизистых

оболочек наблюдаются у больных с ангидротической и другими разновидностями эктодермальных дисплазий, сочетающихся с частичной или множественной врожденной адентией, а также у лиц с врожденной расщелиной в челюстно-лицевой области. Нарушения выявляются при исследовании дерматогли-фов, а также проб на потоотделение и терморегуляцию

Исследование дерматоглифов проводят по специальной методике. Получают отпечатки кожи ладоней и пальцев рук обследуемого, затем расшифровывают дерматоглифи-ческий рисунок. На основании анализа полученных данных судят об этиологии нарушения и степени его выраженности

Пробы на потоотделение и терморегуляцию применяют для выявления ангидроза, который наблюдается у больных с ангидротической эктодермальнои дисплазией К числу таких проб относят подсчет потовых желез, калориметрические пробы (Минора, Южелевского, Ауборта), содержание хлоридов пота (по методике Швахмана и Гама), весовые методы, изучение электросопротивляемости кожи.

Микроскопия волос позволяет при ангидротической эктодермальнои дисплазий выявить истончение их стержня, веретеновидные утолщения и сужения, а также отсутствие пигмента и мозгового слоя (пушковоподобные волосы)

Пробу на салоотделение проводят для определения недоразвития сальных желез кожи при эктодермальнои дисплазий,

200

сочетающейся с частичной или полной адентией Другие признаки врожденного нарушения морфогенеза кожи выявляют с помощью гистологического исследования

Нарушения пародонта изучают клинически и с помощью лабораторных методов

Проба Роттера позволяет установить степень насыщения тканей аскорбиновой кислотой при заболеваниях пародон-т-а и слизистой оболочки полости рта.

Проба Шиллер а—П и с а р е в а применяется для определения пикогена десны При хроническом воспалении десны содержание гликогена резко увеличивается Проба прижизненной окраски десны после ее смазывания раствором (иода I i, йодида калия 2 г, дистиллированной воды 40 мл) может быгь применена самостоятельно или с последующим использованием стоматоскопа, дающим увеличение в 20 раз

Полярография позволяет определить в динамике напряжение кислорода (Pcs), углекислоты (PcoJ, окислтельно-восстановцтельный показатель (ОВП), а также содержание электролитов (К, Na) в тканях и биологических жидкое гя\ (кровь, слюна) С этой целью используют полярографы ПА-2, ПА-3 и др

Выносливость паролонта к н a i р у з к е отражает чувс1витепьность опорно-связочного аппарата зуба кдавг1ению в горизонтальном и вертикальном направлениях Ее определяют динамическими и

сгатическими методами

 

 

 

Подвпжносчь

зубов

характеризуег

состояние

пародонта

Физиологическая подвижность зуба в горизонтальном направ1еипи пезначтельна, однако при ортодопшческом лечении она усиливается Патологическая подвижное! ь зубов наблюдается при заболеваниях пародота (воспалительных, травматических, в гом числе при их перегрузке) Ее определяют пальпаюрно и с помощью динамометра По циферблату индикатора выявляют линейное отклонение зуба Оказывают давление на зуб до появления боли Физиологическая подвижность зубов равна 0,01—0.025 мм |ЕсеноваЗ Г и др , 1967]

Г и а т о д и н а м о м е т р и я Сконструирован механический гнатод11на\ю\1етр с длинными щечками, которые обследуемый сжимает зубами Определяют в килограммах силу сжатия для каждой пары антагонирующих зубов Д П Конюшко составил таблицу выносливости пародонта к нагрузке в зависимости от вида эубов Кроме механических гнатодинамометров, предложены следующие их конструкциигидравлический [Бу-^ИНАТ, Миллер М Р., 1958],

электронный

[Перзаш-..ви

„^

' I960],

электронный

пародонтодинамометр [Ко-

 

 

 

шкоД п ,

1950], универсальный

электронный

динамометр

1^Урляндский В Ю. и др , 1970].

 

 

 

 

 

 

 

201

Пародонтография — графическая регистрация данных о мощности зубных рядов и их опорного аппарата, предложена В. Ю. Курляндским (1956). Сведения о состоянии па-родонта получают после анализа рентгенограмм и измерения глубины зубодесневых карманов. Полученные данные заносят в пародонтограмму, затем оценивают остаточную мощность пародонта каждого зуба и функциональное состояние зубоче-люстной системы, что особенно важно при выборе конструкций ортодонтических аппаратов и зубочелюстных протезов в процессе лечения детей с синдромом Лефевра—Папийона, а также при лечении подростков и взрослых с заболеванием тканей пародонта. При разработке пародонтограммы использованы не анатомотопографические особенности зубов, а гнатодинамо-метрические данные. Эти данные, характерные для мужчин и женщин, приведены к одинаковым условным коэффициентам. За единицу принята выносливость к нагрузке пародонта верхнего бокового резца. После сложения групповых коэффициентов судят об остаточной мощности передних или боковых зубов, а при сложении всех коэффициентов анализируют выносливость пародонта каждого зубного ряда и зубочелюстной системы в целом.

Графическая регистрация функционального состояния пародонта, по мнению Я. М. Збаржа и Б. А. Мартынека, характеризует состояние зубных рядов и пародонта с учетом вида прикуса, состояния зубов, уровня расположения десневого края и альвеолярного отростка.

7.2. Исследование мышц зубочелюстной системы

С функциональной точки зрения мышцы зубочелюстной системы условно делят на околоротовые и внутриротовые. A. Frankel рассматривает мышцы с ортодонтической точки зрения в виде трех функциональных кругов: мимические, жевательные, мышцы языка. От их синхронизированной функции зависят сохранение динамического равновесия в зубочелюстной системе, форма и размеры челюстей и зубоальвеолярных дуг.

Миотонометрия — запись тонуса мышц, чаще жевательных. Об их тонусе судят по затрачиваемой силе, которую необходимо приложить, чтобы погрузить щуп миотонометра на необходимую глубину в области расположения изучаемой мышцы. Применяют механические, электрические, полупроводниковые миотонометры. Данные миотонометрии позволяют судить о тонусе исследуемых мышц при различных состояниях, о перестройке миотатических рефлексов в процессе ортодонтического лечения, адаптационных возможностях мышц.

Миография— запись сократительной способности мышц,

202

чаще собственно жевательных, височных. Регистрируют их функцию в различных фазах сокращений. Пальпаторно определяют эпицентр мышцы при ее максимальном напряжении и подводят к нему датчик, который соединен с записывающей частью аппарата. Для регистрации сократительной способности мышц применяют различные приборы: усовершенствованный мастикациограф Рубинова, комплексную тензометрическую аппаратуру Рубинова, миотонодинамометрограф конструкции В. Ю. Курляндского, И. Садыкова и С. И. Яковлева.

Электромиография— запись биопотенциалов мышц с целью изучения их электрофизиологической активности. Определяют нарушение функции жевательных и мимических мышц в покое, при напряжении и движениях нижней челюсти, характерное для разновидностей аномалий прикуса. Для исследования можно использовать многоканальный электромиограф «Diza» (Франция) и др. ЭМГ записывают на перфорированной фотопленке со скоростью вращения 5 мм в секунду, на перфорированной фотобумаге для осциллографа шириной 10 см — со скоростью 20 мм в секунду или на бумажной ленте.

Для изучения состояния мышц применяют поверхностные или игольные электроды. Поверхностные электроды располагают на моторной площади регистрируемой мышцы. Идентичность электромиографических исследований достигается наложением электродов на одинаковом расстоянии между ними. С этой целью электроды помещают в специальные приспособления из эластичной пластмассы или другого материала. Их накладывают на одни и те же участки кожи, что обеспечивает идентичность отвода биотоков при повторных исследованиях в процессе ортодонтического лечения и при проверке его отдаленных результатов. Для соблюдения этого условия при исследовании собственно жевательных мышц можно применять предложенное Б. А. Перегудовым (1967) приспособление по типу угломера для определения величины нижнечелюстных углов. К горизонтальной пластинке угломера под прямым углом присоединяют прозрачную линейку с движком. После пальпатор-ного определения эпицентра сокращения мышцы на коже лица отмечают двигательную точку. К углу нижней челюсти прикладывают угломер и на его шкале определяют расположение отмеченной на лице точки в горизонтальном и вертикальном направлениях. Полученные координаты записывают в карту обследования и учитывают в дальнейшем.

При исследовании височной мышцы электроды можно накладывать на переднюю, среднюю или заднюю часть правой и левой мышц, при исследовании круговой мышцы рта — на ^едний участок верхней или нижней губы, при исследовании подбородочной мышцы — на область подбородка. Перед нало-

203

жением электродов соответствующие участки кожи тщательно протирают этиловым спиртом и наносят на них специальную пасту.

Активность парных мышц желательно регистрировать в физиологическом покое, при напряжении, в том числе при сжатии зубных рядов, различных движениях нижней челюсти. Кроме того, представляет интерес изучение электроактивности этих мышц при жевании, произвольном глотании и глотании по заданию. Чтобы определить степень участия в этих актах круговой мышцы рта, подбородочной мышцы, собственно жевательной мышцы и др., следует получать ЭМГ одновременно по нескольким каналам.

Исследование нужно проводить в специально оборудованной комнате в положении обследуемых сидя. Чтобы снять общее напряжение и успокоить больных, особенно детей, с ними и их родителями проводят беседу. Затем получают контрольную запись у одного из больных в присутствии остальных. До записи дети должны неоднократно повторить необходимые в ходе исследования движения. После такой тренировки можно приступить к записи. Анализ ЭМГ производят, оценивая общую структуру осциллограмм, частоту колебаний и величину их амплитуды. Сравнивают ЭМГ, полученные при исследовании одних и тех же мышц.

При ортогнатическом прикусе ЭМГ жевательной мышцы, зарегистрированная в физиологическом покое, обычно отражает слабовыраженную электроактивность с наличием низковольтных колебаний. Такая запись представляет почти ровную линию.

Повышение биоэлектрической активности круговой мышцы рта в покое чаще выявляют у больных с аномалиями прикуса, у которых губы не сомкнуты в результате дыхания ртом, вредных привычек сосания губ, пальцев, каких-либо предметов и др.

Биоэлектрическая активность подбородочной мышцы в покое нередко бывает повышена у больных с дистальным или мези-альным прикусом. Наибольшая амплитуда колебаний биопотенциалов подбородочной мышцы в покое отмечается при наличии между передними зубами сагиттальной или вертикальной щели. Постоянное давление подбородочной мышцы на область апикального базиса нижнего зубного ряда способствует ретру-зии альвеолярного отростка, изменению формы подбородка В поперечном сечении. При таком нарушении наблюдается также несоответствие в расположении кожной (pg)H костной (Pg) точек подбородка, что выявляется при анализе боковых ТРГ головы. Степень нарушения прикуса зависит от плотности контактов между зубами и зубными рядами, от смещения нижней

204

челюсти в покое по сравнению с ее положением в окклюзии, а также от других факторов.

Собственно жевательные мышцы и передние пучки височных мышц при аномалиях прикуса в покое обычно проявляют слабовыраженную электрическую активность. Биоэлектрическая активность задних пучков височных мышц в покое повышена у больных с дистальным прикусом. Анализ ЭМГ и сопоставление полученных данных с результатами изучения диагностических моделей челюстей и боковых ТРГ головы позволяют предположить, что тоническое напряжение той или иной мышцы в покое может возникать вследствие неправильного положения зубов и их смыкания при движениях нижней челюсти.

Диагностика нарушения акта глотания имеет большое значение для эффективности лечения аномалий прикуса. Отклонения в прикусе, форме и расположении губ взаимосвязаны с изменением активности круговой мышцы рта. При нормальном глотании губы смыкаются в результате совместной функции круговой мышцы рта, подбородочной и других мимических мышцПри неправильном глотании наблюдается повышение биопотенциалов круговой мышцы рта, что обычно сочетается с протрузией верхних передних зубов и дистальным прикусом или с их ретрузией и мезиальным прикусом. Нормальное глотание происходит при смыкании зубов и характеризуется повышением биопотенциалов собственно жевательных и передних пучков височных мышц.

Электроактивность круговой мышцы рта зависит от особенностей строения губ, высоты нижней части лица и степени его выпуклости или вогнутости.

При сжатии зубов у больных с дистальным прикусом в ряде случаев отмечается сочетание высокой амплитуды колебаний биопотенциалов собственно жевательных мышц и задних пучков височных мышц. При этом сила сокращения собственно жевательных мышц воздействует на боковые зубы в косом направлении, а именно вертикально и вперед. Сила сокращения задних пучков височных мышц направлена вверх и назад, что должно уравновешивать силы, развиваемые собственно жевательными мышцами. Высокая электрическая активность передних пучков височных мышц наблюдается при мезиальном прикусе, особенно сочетающимся со смещением нижней челюсти вперед при привычной окклюзии по сравнению с ее положением в покое.

После исправления мезиального прикуса биопотенциалы этих мышц нормализуются.

При движениях нижней челюсти вперед и назад собственно

Жевательные и височные мышцы не всегда принимают одина-

205

ко вое участие. В ряде случаев отмечается более высокая амплитуда колебаний биопотенциалов при движении вперед, чем при сжатии зубов. Это можно объяснить различным направлением тяги собственно жевательных мышц у разных людей, связанным с вариантами расположения мест прикрепления этих мышц.

Направление тяги отчасти зависит от величины базального угла, формы ветвей нижней челюсти, а также величины и расположения ее углов.

При перемещении нижней челюсти кзади при дистальном прикусе чаще наблюдается слабая биоэлектрическая активность собственно жевательных мышц. Повышение ее при этом движении сочетается с повышением биоэлектрической активности височных мышц, что можно объяснить стремлением сжать зубы при смещении нижней челюсти кзади. Биопотенциалы, отведенные от задних пучков височных мышц, указывают на их высокую электрическую активность.

Изучение биоэлектрической активности мышц, окружающих зубные ряды, позволяет выяснить влияние их функции на рост челюстей и формирование прикуса. Известно, что собственно жевательные мышцы имеют сравнительно короткие волокна и большую массу. В результате сокращения этих мышц нижняя челюсть перемещается вверх и вперед. Височные мышцы в основном поднимают нижнюю челюсть, хотя передние и задние их пучки имеют разное направление и отведенные от них биопотенциалы также нередко бывают неодинаковыми. Преобладание функции одной из этих двух пар мышц во время жевания (массетерный или темпоральный тип жевания) обусловливает до некоторой степени направление роста нижней челюсти. По мнению А. М. Schwarz, если преобладает функция собственно жевательных мышц, то нижняя челюсть хорошо развита. Преобладание функции собственно жевательных мышц наблюдается при мезиальном прикусе, височных мышц — при дистальном. Гипотонус мышц, поднимающих нижнюю челюсть, обычно сочетается со значительным разобщением зубных рядов во время физиологического покоя (более 3 мм), а при гипертонусе этих мышц разобщение незначительно. Следовательно, тонус мышц влияет на степень разобщения зубов в физиологическом покое.

Длительное сознательное повышение тонуса мышц и удерживание нижней челюсти в определенном положении, т. е. тренировка мышц, приводят к иному положению нижней челюсти в состоянии физиологического покоя. После устранения вредных привычек и причин, вызывающих дыхание ртом, пациент должен научиться удерживать нижнюю челюсть в правильном положении; в результате этого тонус мышц постепенно повышается. Тренировкой мышц и соответствующей

206

лечебной гимнастикой пациент должен заниматься до тех пор, пока правильное положение нижней челюсти не станет привычным, т. е. пока не выработается соответствующий рефлекс.

7.3- Исследование движений нижней челюсти

Взаимоотношения зубоальвеолярных дуг оценивают при различных видах артикуляции и окклюзии, так как одной из задач ортодонтического лечения является достижение артикуляционного равновесия, обеспечивающего оптимальную функцию.

Гнатодинамография относится к методам изучения движений нижней челюсти. Для определения суставного, сагиттального и бокового путей суставных головок нижней челюсти применяют лицевую дугу Гизи. Ее внутриротовую часть укрепляют на зубах нижней челюсти соответственно направлению окклюзионной плоскости, а наружную часть, параллельную внутренней, располагают вне полости рта. На концах внерото-вой дуги на уровне суставных головок укрепляют карандаш. При перемещении нижней челюсти вперед карандаш рисует на бумаге путь перемещения суставных головок. Угол его составляет 20— 40° по отношению к окклюзионной плоскости. Изменяя направление карандашей и регистрационной бумаги и смещая нижнюю челюсть в сторону, записывают боковой суставной путь, угол которого равен 15—17°.

Для изучения суставного и резцового путей предложены артикуляторы Бонвиля, Гизи, Ганау, Хайта, Сорокина и др. Их применяют для конструирования зубных протезов с учетом индивидуальных особенностей движений нижней челюсти. В ортодонти ческой практике с их помощью изучают движения нижней челюсти в норме и при различных зубочелюстных аномалиях, причины рецидивов зубочелюстных аномалий.

Представляют интерес методики исследования артикуляционных соотношений, ориентированных диагностических моделей челюстей, например гнатостатических или гнатофоричес-ких, предложенных V. Andresen. Гнатостатические модели челюстей получают в индивидуальном суставном артикуляре, верхняя поверхность которого соответствует франкфуртской горизонтальной плоскости, передняя — орбитальной. Эти плоскости и срединную плоскость маркируют на моделях челюстей. Прикусной шаблон позволяет установить переднее и заднее положение нижней челюсти, определить общий суставной путь, а также путь справа и слева. Затем определяют резцовый путь в сагиттальном и трансверсальном направлениях. Полученные результаты также отмечают на цоколе моделей челюстей. Гнатофорическая методика изучения моделей челюстей позволяет воспроизвести взаимоположение зубных рядов

207

в пространстве черепа в состоянии физиологического покоя,

определить индивидуальные и возрастные особенности артикуляции зубов, сравнить артикуляцию зубов при различных видах

зубочелюстных аномалий с нормальной.

Осциллография жевательных движений нижней челюсти предложена Е. И. Гавриловым и Н. И. Карпенко (1962). Авторы применили трехканальный электрокардиограф «Визо-корд» для одновременной записи движений нижней челюсти, величины кровяного давления и ритма сердечных сокращений.

Мастикациография — разработанный И. С. Рубиновым метод определения функционального состояния зубочелю-стной системы и регистрации движений нижней челюсти с помощью мастикациофафа. Он состоит из резинового баллона в пластмассовом футляре. Перо капсулы записывает на кимографе кривые движения нижней челюсти во время жевания, глотания, сосания, речи. О продолжительности отдельных жевательных волн судят по данным отметчика времени. Анализ мастикациограмм позволяет получить представление о ритме и размахе движений нижней челюсти во время жевания, об интенсивности жевания и об имеющихся отклонениях при различных видах прикуса. Недостатки мастикациографии связаны с конструктивными недостатками механических мастикацио-графов, изменением естественных условий функционирования нижней челюсти и др.

С целью усовершенствования мастикациографии М. С. Тис-сенбаум (1958) предложил гидропневматический прибор, состоящий из миометра, волнометра, гнатодинамометра и капсулы Марея С помощью такого аппарата регистрируют изменения жевательных мышц и судят о жевательной эффективности.

Электромиомастикациография предложена И. С. Рубиновым. При помощи масти кациографа регистрируют движения нижней челюсти, электромиографа — биопотенциалы жевательных мышц. Изучают процессы возбуждения в мышцах в различные фазы периода жевания

(рис. 7.1).

Миоартрография — одновременная регистрация сокращений собственно жевательных мышц и движений суставных головок нижней челюсти в височно-нижнечелюстных су- ! ставах с помощью электронного миоартрографа (В. Ю. Курлян-дский, С. Д. Федоров). Смещение суставных головок и изменение объема мышц при их сокращении и расслаблении приводят к деформации пластинок, прилегающих к коже лица в изучаемых участках, изменению сопротивления тензодатчика. Измененный электрический импульс усиливают и записывают на фотопленку. Миоартрография позволяет различать волны сокращения мышц и волны, возникающие при движениях нижней челюсти.

208

Рис 7 1 Электромиограммы круговой (а, I, б, I) и подбородочной (а, II, б, II) мышц рта. Контуры твердых и мягких тканей (в, г), скопированные с боковых телерентгенограмм лица больной П. до (а, в) и после (б, г) лечения.

Артрофонография — метод аускультации височно-ниж- нечелюстных суставов для выявления в них шума, хруста, Щелканья и дифференциальной диагностики функциональных и морфологических нарушений.

'lA• Исследование функций зубочелюстной системы

ФУНКЦИЯ жевания. Сосание как способ приема пищи грудными Детьми сопровождается перестройкой височно-нижнечелюстных суставов, что обеспечивает возможность перехода к дру-

209