Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нанотехнология негіздері.docx
Скачиваний:
473
Добавлен:
08.03.2016
Размер:
3.06 Mб
Скачать

4. Наноматериалдарды тұрмыста қолдану

Қазіргі уақытта наноматериалдар мен нанотехнологияларды қолданатын негізгі салалар: конструкциялық материалдар, инструменталдық материалдар, өндірістік технологиялар, триботехника, материал беттерін қорғау, әскери іс, электр-магнит және электрондық техника, ядролық техника, медицина мен биотехнологияда көп қолданылады. Конструкциялық материалдарда тығыздығы жоғары наноқұрылымдық материалдар қолданылады. Себебі тығыздығы жоғары болса, тозуға төзімді материалдарды алуға болады. Сонымен қатар көміртекті наноталшықтармен және фуллерендермен динамикалық соққыдан қорғайтын брондар мен бронжилеттер жасауға қолданылады. Наноматериалдарды өндірістік технологияда қолдану маңызды роль атқарады. Қиын балқитын наноұнтақтарды болаттар мен құймаларға, комплекстердің механикалық қасиетін жақсартуға және катализатор ретінде қолдануға болады. Материалдарды қорғау. Бұйымдар дұрыс функционалдануы үшін олардың беттерінің жоғары су- және май ығыстыратын қасиеттерін қамтамасыз ету керек. Мұндай бұйымдарға автомобиль әйнектері, ұшақтарды және кораблдерді әйнектеу, қорғаныш костюмдері, сұйықтарды сақтайтын резервуарлар қабырғалары, құрылыс конструкциялары және т.б. мысал болып табылады. Осы мақсаттарда 20-50 нм өлшемді титан оксиді және полимер байланыстырушы негізіндегі жамылғы жасауда қолданылады. Медицина және биотехнология.Таза наноқұрылымды материалдарды жеке алғанда Ті-ды қолданудың маңызды облысы оларды медициналық мақсатта - имплантанттарды, протездерді және травматологиялық аппараттарды дайындау үшін қолдану болып табылады. Наноматериалдарды қолданудағы шектеулер.Наноқұрылымды конструкциялық материалдарды қолданудағы маңызды шектеу олардың дәнек шекараларының көлемдік үлесінің үлкен болуынан коррозияға( беттегі атомдардың және дәнек шекаралары бойынша атомдар диффузиясы, коррозиялық әсерлермен үйлесімділіктегі жоғары температуралар, радиация, дәнек шекаралары бойынша химиялық құрамның өзгерістерге бейімділігі құйма құрамы) бейімділігі болып табылады. Осыған байланысты олар осындай коррозия жағдайында ( беттен және дәнек шекаралары бойынша атомдардың диффузиясы, коррозиялық әсерлермен жоғары температуралардың бірігуі, дәнек шекарасы бойынша химиялық құрамның өзгерістеріне қабілетті құйма құрамы және т.б.) жұмыс істеуге жарамсыз болып табылады. Басқа маңызды шектеу наноматериалдар құрылымының орнықсыздығы, осылайша олардың қасиеттерінің орнықсыздығы болып табылады.

5. Нанокристалдар дегеніміз не?

Нанокристалдар деп көлемі молекуладан үлкен (яғни 10 нм-ден ), бірақ макроскопиялық кристалдардан біршама кіші бірнеше атомжиынтығын айтады. Олардың физикалық және химиялық сипаттамасы әр түрлі болкы мүмкін, бірақ нанокристалдардың өлшемі мен ауданы (мысалы, кванттық нүктелердің), демек олардың қасиеттері қатаң бақыланады. Расында, ғалымдар олардың кристалды құрылысын анықтап, электр өткізгіштігін реттеп және балқу температурасын өзгерте алады. Калифорния штатындағы Беркли Угиверситетінде(АҚШ) және Лоуренс Беркли(АҚШ) атындағы Өлттық лабораторияда жұмыс атқаратын химик Пол Аливисатос көпіршік тектес беттік белсенді заттарға (ББЗ) жартылай өткізгіш ұнтақтарды қосу арқылы нанокристалдар жасайды. Ол өзінің әріптестерімен бірге ББЗ-дың көмегімен әртүрлі пішіндегі (мысалы, өзек немесе сфера түріндегі)нанокристалдарды өсіріп шығарды. Беттік белсенді заттар – сұйықтыққа қосқанда, оныі беттік керілуін төмендету арқылы сұйықтықтың затқа ену қасиетін жақсартатын заттар (мысалы, кір жуатын ұнтақ).Аливасатос өзінің әріптестерімен бірге стержень тәрізді жартылай өткізгіш нанокристалдарды алып және пішіні мен өлшемін бақылауға мүмкіндік беретін жағдайларды анықтады. Пішінін өзгерту ұстанымы аяғына дейін түсінікті емес, бірақ ол сұйықтықтың атомдары мен ББЗ-дың өзара әрекеттесу сипатымен анықталуы мүмкін. Осы жағдайларды реттей отырып, ғалымдар бірнеше әртүрлі типті нанокристалдарды (созылған өзектер мен шектелген кристаликтерді) өсіріп шығарған. Сонымен қатар, ғалымдар поляризацияланбаған жарық шығаратын сфералық нанокристалдарға қарағанда, стержень пішінді нанокристалдар өзінің ұзын өсінің бойымен поляризацияланған жарық шығаратынын көрсетті. Осы қасиетінің арқасында бұндай нанокристалдар биологиялық маркерлер ретінде пайдалануға қолайлы.Аливисатос әріптестерімен стерженьдердің сәуле шығару және жұту энергияларының арасындағы шекара сфераларға қарағанда көп екендігін байқады. Бұл қасиет шығарылатын жарықтың бір бөлігін жұтатын жарық шығарушы диодтардың сипаттамаларын жақсартуға мүмкіндік береді. Нанокристалды өзектерді қажетті бағытта тығыз орналастыруға болатындықтан, оларды жарық диодтары мен фотогальваникалық элементтерінде пайдалануға болады. Ғалымдар әртүрлі қайран қалатын пішіндегі, мысалы, тамшы, бағыттағыш және тіпті, рычаг түріндегі нанокристалдарды өсіруді үйреніп алды. Мұндай пішінді нанокристалдар әлі өзінің қолданыс аясын таппады, бірақ олардың болашақта пайдаға асуы әбден мүмкін. Мысалы, рычаг пішініндегі тетрапод типті құрыымдарды наноэлектроникада дәнекер ретінде қолдануға болады.