Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция биология III.docx
Скачиваний:
19
Добавлен:
11.06.2015
Размер:
253.22 Кб
Скачать

Элонгация

Схема РНК-связывающих участков рибосомы. Буквами обозначены участки связывания тРНК. А — аминоацил-тРНК-связывающий участок, Р — пептидил-тРНК-связывающий участок, Е — участок отсоединения тРНК от рибосомы (англ. exit).

В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит аминоацилированную (заряженную аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует образование пептидной связи, происходит перенос растущей цепи пептида с Р-сайтовой тРНК на находящуюся в А-сайте, пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует так называемую транслокацию. Транслокация — перемещение рибосомы по мРНК на один триплет, в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). Цикл элонгации завершается, когда новая тРНК с нужным антикодоном приходит в A-сайт.[источник не указан 1200 дней]

[Править]Терминация

Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонами.

Ген — структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательностьДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторыеорганеллы (митохондрии, пластиды) имеют собственную ДНК, не входящую в геном организма, которая определяет их признаки.

Митохо́ндрия (от греч. μίτος — нить и χόνδρος — зёрнышко, крупинка) — двумембранная гранулярная или нитевидная органеллатолщиной около 0,5 мкм. Характерна для большинства эукариотических клеток как автотрофов (фотосинтезирующие растения), так игетеротрофов (грибы, животные). Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ, который происходит за счёт движения электрона поэлектронно-транспортной цепи белков внутренней мембраны. Количество митохондрий в клетках различных организмов существенно отличается: так, одноклеточные зелёные водоросли (эвглена, хлорелла, политомелла) и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300000 и 500000 митохондрий соответственно; у кишечных анаэробныхэнтамёб и некоторых других паразитических простейших митохондрии отсутствуют.

Общие сведения

Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами митохондрий, приводящими к нарушениямтканевого дыхания. Они передаются только по женской линии к детям обоихполов, так каксперматозоидыпередают зиготе половину ядерногогенома, аяйцеклеткапоставляет и вторую половину генома, имитохондрии. Патологические нарушения клеточного энергетического обмена могут проявляться в виде дефектов различных звеньев вцикле Кребса, вдыхательной цепи, процессахбета-окисленияи т. д.

Не все ферментыи другие регуляторы, необходимые для эффективного функционирования митохондрий, кодируются митохондриальнойДНК. Большая часть митохондриальных функций контролируется ядерной ДНК[1].

Можно выделить 2 группы митохондриальных заболеваний:

  • Ярко выраженные наследственные синдромы, обусловленные мутациямигенов, ответственных за митохондриальные белки (синдром Барта,синдром Кернса-Сейра,синдром Пирсона,синдром MELAS,синдром MERRFи другие).

  • «Вторичные митохондриальные заболевания», включающие нарушение клеточного энергообмена как важное звено формирования патогенеза(болезни соединительной ткани,синдром хронической усталости,гликогеноз,кардиомиопатия,мигрень,печеночная недостаточность,панцитопения, а такжегипопаратиреоз,диабет,рахити другие).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]