Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПРОГРАММА ЭКЗАМЕНА по курсу.doc
Скачиваний:
16
Добавлен:
06.06.2015
Размер:
307.71 Кб
Скачать

История

Термин «антропный принцип» впервые предложил в 1973 году английский физик Брэндон Картер.[1] Впрочем, как обнаружили историки науки, сама идея неоднократно высказывалась и ранее. Первыми её ясно высказали физик А. Л. Зельманов в 1955 году и историк науки Г. М. Идлис на Всесоюзной конференции по проблемам внегалактической астрономии и космологии (1957).[8] В 1961 году ту же мысль опубликовал Р. Дикке.[9]

Брэндон Картер в вышеуказанной статье 1973 г. сформулировал также сильный и слабый варианты антропного принципа. Статья Картера привлекла к данной теме всеобщее внимание, свои мнения высказывали не только физики, но и многие другие — от журналистов до религиозных философов. В 1986 году вышла первая монография: Дж. Д. Барроу и Ф. Дж. Типлер, «Антропный космологический принцип», где признан приоритет Г. М. Идлиса.[10] В 1988 году в Венеции прошла первая научная конференция, посвящённая антропному принципу, спустя год в СССР состоялся международный семинар «Антропный принцип в структуре научной картины мира: история и современность».[6] В дальнейшем антропный принцип постоянно затрагивался как на специализированных форумах, так и при обсуждении фундаментальных вопросов физики, космологии, философии и теологии.

Соотношения, необходимые для образования жизни

Численные значения многих безразмерных (то есть не зависящих от системы единиц) фундаментальных физических параметров, таких как отношения масс элементарных частиц, безразмерные константы фундаментальных взаимодействий, кажутся не подчинёнными никакой закономерности. Однако выясняется, что если бы эти параметры отличались от своих наблюдаемых значений лишь на небольшую величину, разумная жизнь (в привычном нам понимании) не могла бы образоваться.

[Править]Размерность пространства

Прежде всего бросается в глаза тот факт, что только в трёхмерном пространстве может возникнуть то разнообразие явлений, которое мы наблюдаем. Так, для размерности пространства более трёх при принятии ньютоноподобного закона тяготения невозможны устойчивые орбиты планет в гравитационном поле звёзд. Более того, в этом случае невозможна была бы и атомная структура вещества (электроны падали бы на ядра даже в рамках квантовой механики). Именно при числе измерений больше трёх квантовая механика предсказывает бесконечный спектр энергий электрона в атоме водорода, допускающий как положительные, так и отрицательные значения энергии. В случае размерностей меньше трёх движение всегда происходило бы в ограниченной области. Только при  возможны как устойчивые финитные, так и инфинитные движения[11].

Изложенные выше аргументы относятся к случаю нерелятивистского рассмотрения проблемы. Если же попытаться распространить общую теорию относительности как современную теорию гравитации на пространство-время с другим количеством пространственных измерений, то картина получается обратной: при двух пространственных измерениях гравитационно взаимодействующие тела ни при каких условиях не могут образовывать связной системы (это давно известно в ОТО и было обнаружено в 1960-х гг., см. космические струны)[12], а при числе измерений пространства большем трёх гравитационное взаимодействие наоборот, настолько сильно, что не позволяет бесконечного движения тел. Таким образом, предельный переход общей теории относительности в ньютоновскую теорию тяготения возможен только в пространстве трёх измерений.

Интересно также, что Стандартная Модель физики элементарных частиц, базирующаяся на теории полей Янга — Миллса, не перенормируема в пространстве более, чем трёх измерений.