Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_po_fizike и шпоры(3 семестр).docx
Скачиваний:
19
Добавлен:
06.06.2015
Размер:
288.93 Кб
Скачать

Вопросы по физике

1.Законы отражения и преломления света. Принцип Ферма.Показатель преломления вещества. Изменение скорости света и длины волны при переходе из одной среды в другую.

2. Явление полного внутреннего отражения

3. Центрированная оптическая система. Действительное и мнимое изображение. Тонкая линза. Фокус, фокальная плоскость.

4. Тонкая линза. Формула линзы. Правило знаков.

5. Построение изображения в линзах. Ход основных лучей в линзах.

6. Телескоп. Угловое увеличение телескопа.

7. Микроскоп. Увеличение микроскопа.

8. Копускулярно-волновой дуализм. Фотоэффект.

9. Копускулярно-волновой дуализм. Тормозное рентгеновское излучение.

10. Копускулярно-волновой дуализм. Эффект Комптона.

11. Излучение абсолютно черного тела. Энергетическая светимость. Спектральная плотность энергетической светимости. Гипотеза Планка. Планковская кривая.

12.Зависимость излучательной способности абсолютно черного тела от частоты и длины волны. Закон смещения Вина.

13.Модель атома водорода по Бору. Боровские орбиты. Спектр энергий электрона. Спектральные серии Лаймана и Бальмера.

14.Волны де Бройля. Границы применимости классической механики. Принцип неопределенности Гейзенберга.

15.Волновая функция и её физический смысл. Уравнение Шредингера.

16.Уравнение Шредингера для стационарных состояний. Оператор Гамильтона.

17. Частица в потенциальной яме с бесконечно высокими стенками. Квантование энергии.

18. Уравнение Шредингера для гармонического осциллятора. Квантование энергии.

19. Атом водорода. Главное, орбитальное и магнитное квантовые числа.

20.Состав и характеристики атомных ядер. Энергия связи. Радиоактивность.

Вопрос 11-12 Абсолютно чёрное тело — физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет.Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладаетСолнце.

Энергетическая светимость (излучательность) поверхности источника излучения — физическая величина, равная отношению потока излучения, испускаемого площадкой источника излучения, к её площади.

 , [Вт/м2]

 где — коэффициент отражения поверхности.

Количественной характеристикой теплового излучения служит спектральная плот­ность энергетической светимости (излучательности) тела — мощность излучения с еди­ницы площади поверхности тела в интервале частот единичной ширины:

где d — энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от  до +d.

Единица спектральной плотности энергетической светимости (R,T) — джоуль на метр в квадрате (Дж/м2).

Записанную формулу можно представить в виде функции длины волны:

Так как c=, то

где знак минус указывает на то, что с возрастанием одной из величин ( или ) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

 

Гипо́теза Пла́нка — гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или  — коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения междутемпературой тела и испускаемым этим телом излучением — формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Выдвижение этой гипотезы считается моментом рождения квантовой механики.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где I(ν,T)dν — мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + dν.

Эквивалентно,

,

где u(λ,T)dλ — мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + dλ.

Закон смещения Вина - закон, определяющий положение максимума в распределении энергии в спектре излучения абсолютно черного тела при изменении его температуры.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

где T — температура в кельвинах, а λmax  — длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Вопрос 13. Модель атома водорода по Бору

Исходя из этих постулатов и используя планетарную модель строения атома, Н. Бор разработал количественную теорию атома водорода. Он рассчитал радиусы стационарных орбит электрона в атоме водорода и вычислил соответствующие им значения энергии.

Расчет радиусов орбит.' Электрон движется вокруг ядра в атоме водорода по круговой орбите под действием кулоновской силы, которая сообщает

ему центростремительное ускорение. По второму закону Ньютона 

Центростремительное ускорение электрону сообщает кулоновская сила притяжения со стороны ядра Следовательно,

 откуда (20.1)

Согласно III постулату Бора: отсюда

 (20.2)

Из уравнений (20.1) и (20.2) получим 

Откуда

 (20.3)

выражение для радиусов разрешенных стационарных орбит электрона в атоме водорода. Здесь n — номер орбиты, радиус которой r, — электрическая постоянная, h — постоянная Планка, m — масса электрона, е — заряд электрона.

Мы видим, что радиусы стационарных устойчивых орбит возрастают пропорционально квадратам номеров орбит (рис. 20.3): и т.д. Если электрон в атоме водорода находится на одной из стационарных орбит, то атом обладает определенным значением энергии, определяемой энергией электрона:

(Знак "-" перед потенциальной энергией означает, что за принято то значение, которое соответствует ). Подставив в эту формулу значения и r из формул (20.2) и (20.3), получим:

Таким образом, энергия электрона, находящегося на n-й орбите,

 (20.4)

Из этой формулы видно, что значения энергии атома водорода квантованы и, чем больше n, тем больше энергия Wn. Для наглядного представления возможных энергетических состояний атомов используются энергетические диаграммы, на которых каждое стационарное состояние атома отмечается горизонтальной линией, называемой энергетическим уровнем (рис. 20.4). Ниже всех на диаграмме располагается энергетический уровень, соответствующий основному состоянию (состояния с минимальной энергией). Энергетические уровни возбужденных состояний располагаются над основным уровнем на расстояниях, пропорциональных разности энергий возбужденного и основного состояний. Переходы атома из одного состояния в другое изображаются вертикальными линиями между соответствующими уровнями на диаграмме. Направление перехода обозначается стрелкой. При переходе электрона с k-й на n-ю орбиту излучается фотон с частотой

Рис. 20.4

Сравнивая это выражение с эмпирической формулой

(20.5)

видим, что постоянная Ридберга следовательно, в формуле (20.5) k — номер орбиты, с которой происходит переход электрона в атоме, n — номер орбиты, на которую переходит электрон.

СПЕКТРАЛЬНЫЕ СЕРИИ

       

группы спектр. линий в ат. спектрах, частоты к-рых подчиняются определ. закономерностям. В спектрах испускания линии данной С. с. возникают при всех разрешённых излучательных квантовых переходах с разл. начальных возбуждённых уровней энергии на один и тот же конечный уровень и «сходятся» к границе серии, имеющей максимальную для данной серии частоту перехода ((см. АТОМ) рис. 1 в ст. ). Наиболее чётко С. с. выделяются в спектрах водорода и водородоподобных атомов, гелия, щелочных металлов.

Волн. числа линий в С. с. водорода определяются ф-лой:

где R — Ридберга постоянная, ni и nk — целые числа, определяющие начальный и конечный уровни энергии. Для каждой С. с. ni постоянно, а числа, определяющие верхние уровни, nk=ni+1, ni+2, . . . Так, для ni=1 и nk=2, 3, ... получается серия Лаймана, частоты линий к-рой лежат в далёкой УФ области; при ni=2, nk=3, 4, . ...— серия Бальмера, её линии лежат в видимой и ближней УФ областях; при ni= 3, nk=4, 5, . . .— серия Пашена, расположенная в ИК области. В далёкой ИК области лежат серии Б рэкета (ni = 4), Пфунда. (ni=5) и Хамфри (ni=6). Ф-ла для С. с. водородоподобных атомов отличается от (*) коэфф. Z2 (Z — ат. номер).

В спектрах щелочных металлов расположение линий описывается более сложными закономерностями. В них выделяются главная, резкая, диффузная и Бергмана серии.

Вопрос 14. Во́лны де Бро́йля — волны, связанные с любыми микрочастицами и отражающие их волновую природу. В 1924 году[1] французский физик Луи де Бройль высказал гипотезу о том, что установленный ранее[1] для фотонов корпускулярно-волновой дуализмприсущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию E и импульс, абсолютное значение которого равно p, то с ней связана волна, частота которой ν = E / h и длина волны λ = h / p, где h — постоянная Планка.[1] Эти волны и получили название волн де Бройля

Физический смысл

Для частиц не очень высокой энергии, движущихся со скоростью (скорости света), импульс равен (где — масса частицы), и . Следовательно, длина волны де Бройля тем меньше, чем больше масса частицы и её скорость. Например, частице с массой в 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с м, что лежит за пределами доступной наблюдению области. Поэтому волновые свойства несущественны в механике макроскопических тел. Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~ 1 нм до 10−2 нм, то есть в интервале длин волн рентгеновского излучения. Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей.[1]

Первое подтверждение гипотезы де Бройля было получено в 1927 году в опытах американских физиков К. Дэвиссона и Л. Джермера. Пучок электронов ускорялся в электрическом поле с разностью потенциалов 100—150 В (энергия таких электронов 100—150 эВ, что соответствует нм) и падал на кристалл никеля, играющий роль пространственной дифракционной решётки. Было установлено, что электроны дифрагируют на кристалле, причём именно так, как должно быть для волн, длина которых определяется соотношением де Бройля.[1]

Подтвержденная на опыте идея де Бройля о двойственной природе микрочастиц — корпускулярно-волновом дуализме — принципиально изменила представления об облике микромира. Поскольку всем микрообъектам (за ними сохраняется термин «частица») присущи и корпускулярные, и волновые свойства, то, очевидно, любую из этих «частиц» нельзя считать ни частицей, ни волной в классическом понимании. Возникла потребность в такой теории, в которой волновые и корпускулярные свойства материи выступали бы не как исключающие, а как взаимно дополняющие друг друга. В основу такой теории — волновой, или квантовой, механики — и легла концепция де Бройля. Это отражается даже в названии «волновая функция» для величины, описывающей в этой теории состояние системы. Квадрат модуля волновой функции определяет вероятность состояния системы, и поэтому о волнах де Бройля часто говорят[3]как о волнах вероятности (точнее, амплитуд вероятности). Для свободной частицы с точно заданным импульсом p (и энергией ), движущейся вдоль оси x, волновая функция имеет вид[1]:

где — время, .

В этом случае , то есть вероятность обнаружить частицу в любой точке одинакова.

Классическая механика основана на законах Ньютонапреобразовании скоростей Галилея и существовании инерциальных систем отсчёт Границы применимости классической механики

В настоящее время известно три типа ситуаций, в которых классическая механика перестаёт отражать реальность.

  • Свойства микромира не могут быть поняты в рамках классической механики. В частности, в сочетании с термодинамикой она порождает ряд противоречий (см.Классическая механика). Адекватным языком для описания свойств атомов и субатомных частиц является квантовая механика. Подчеркнём, что переход от классической к квантовой механике — это не просто замена уравнений движения, а полная перестройка всей совокупности понятий (что такое физическая величина, наблюдаемое, процесс измерения и т. д.)

  • При скоростях, близких к скорости света, классическая механика также перестаёт работать, и необходимо переходить к специальной теории относительности. Опять же, этот переход подразумевает полный пересмотр парадигмы, а не простое видоизменение уравнений движения. Если же, пренебрегая новым взглядом на реальность, попытаться всё же привести уравнение движения к виду F = ma, то придётся вводить тензор масс, компоненты которого растут с ростом скорости. Эта конструкция уже долгое время служит источником многочисленных заблуждений, поэтому пользоваться ей не рекомендуется.

  • Классическая механика становится неэффективной при рассмотрении систем с очень большим числом частиц (или же большим числом степеней свободы). В этом случае практически целесообразно переходить к статистической физике.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]