Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Квантовая физика.doc
Скачиваний:
113
Добавлен:
31.05.2015
Размер:
4.06 Mб
Скачать

13.2. Модели ядра: капельная и оболочечная

Для объяснения свойств ядер, процессов происходящих с их участием, а также для предсказания возможных новых эффектов, требуется построение такой теории ядра, которая корректно и полно описывала бы все ядерные явления. Это весьма сложная задача, поскольку специфика ядра не позволяет простыми путями получать информацию о внутренних процессах и строении. Кроме того, ядро является системой большого числа частиц. Математическая задача уже в случае 3 – 4 взаимодействующих тел становится решаемой только с помощью высокопроизводительной вычислительной техники. Построение качественных моделей – это обходной путь, позволяющий сравнительно простыми математическими законами описать совокупность свойств ядер.

Одна из таких моделей – капельная модель – была предложена Я. И. Френкелем в 1939 г. и затем развита Н. Бором. Френкель обратил внимание на то, что нуклоны в ядре, так же как молекулы в капле жидкости, взаимодействуют с ограниченным числом близлежащих частиц. Крайне малая сжимаемость ядерного вещества дополнила аналогию с жидкостью. Учитывая, что в ядре содержится некоторое количество положительно заряженных протонов, то в рамках данной модели следует считать ядро наэлектризованной каплей.

Рис. 13.2. Капельная модель ядра

Капельная модель позволяет вывести полуэмпирическую формулу для энергии связи в ядре. Системе нуклонов предпочтительнее состояние с максимальным значением энергии связи. При этом существует ряд сил, наличие которых снижает значение полной энергии.

Для определения зависимости удельной энергии связи ядра от числа нуклонов необходимо ввести энергию U, которая характеризует каждую нуклон-нуклонную связь. На каждый из пары нуклонов приходится половина этой энергии. Из геометрических соображений следует, что каждый нуклон окружен 12 нуклонами ближнего порядка. Тогда объемная энергия ядра равна: (13.5)

где A число нуклонов в ядре, положим произведение 6U = а.

В действительности в каждом ядре часть нуклонов находится на поверхности ядра и имеет менее 12 «соседей». Поэтому необходимо учитывать поверхностную энергию. Она играет заметную роль в легких ядрах, в которых большая часть нуклонов находится на поверхности.

Учитывая формулу (13.3), получим, что площадь поверхности ядра равна: (13.6)

Поверхностная энергия отрицательна и пропорциональна площади поверхности ядра, следовательно:

(13.7)

Существование поверхностной энергии определяет стремление ядра принять сферическую форму, которая обеспечивает минимальную площадь поверхности и, следовательно, минимальное значение поверхностной энергии при заданном объеме (количестве нуклонов). Т.о., сферическая форма соответствует минимальному снижению полной энергии связи ядра. Аналогичным образом силы поверхностного натяжения заставляют каплю жидкости принимать вид сферы, если на нее не действуют внешние силы.

Электростатические силы отталкивания между каждой парой протонов в ядре определяют еще одну поправку к полной энергии связи ядра. Она эквивалентна работе, которую нужно совершить, чтобы свести вместе из бесконечности Z протонов в объем, равный объему ядра. В ядре, содержащем Z протонов, эта работа пропорциональна числу протонных пар и обратно пропорциональна радиусу ядра (13.3):

(13.8)

Кулоновская энергия также отрицательна, поскольку обусловлена отталкиванием нуклонов, т.е. направлена на разрушение связей в ядре.

Полная энергия связи ядра Eсв является суммой объемной, поверхностной и кулоновской энергий:

(13.9)

Откуда удельная энергия связи ядра, т.е. энергия, приходящаяся на один нуклон, равна:

(13.10)

На рис. 13.3 показаны экспериментальные зависимости разных видов энергий от числа нуклонов в ядре.

Сравнивая соответствующие кривые с теоретическими зависимостями, полученными в рамках капельной модели ядра, можно сказать, что данная теория вполне может быть использована в теоретических расчетах некоторых параметров ядра и для объяснения ряда эффектов.