Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по физике.docx
Скачиваний:
95
Добавлен:
11.05.2015
Размер:
408.81 Кб
Скачать

Гипотеза де бройля

В начале ХХ века было открыто двойственное поведение света, получившее название корпускулярно-волнового дуализма. В 1923 году Луи де Бройль предположил, что двойственная природа характерна и для движущихся частиц вещества, т.е. микрочастиц: электронов, протонов, нейтронов и т.д. По аналогии со светом частицам была сопоставлена длина волны

(13)

Здесь h — постоянная Планка, m и — масса и скорость частицы. Это выражение называется формулой де Бройля, а сами волны  волнами де Бройля. Волновые свойства летящих электронов были обнаружены в опытах при изучении прохождения их через тонкие плёнки кристаллических веществ. Была получена чёткая дифракционная картина, позволившая рассчитать длину волны. Эти волны не являются электромагнитными или механическими волнами, распространяющимися в среде. Из оптико-механической аналогии было показано, что волны де Бройля являются волнами вероятности.

Корпускулярно-волновой дуализм

Ранее было показано, что интенсивность электромагнитной волны пропорциональна квадрату её амплитуды I ~ . Если рассматривать свет как поток фотонов, то интенсивность пропорциональна числу фотоновN, проходящих через единичную площадку в единицу времени. Следовательно, I ~ N ~ Таким образом,N ~ , т.е. число фотонов пропорционально квадрату амплитудынапряжённости электрического поля световой волны. Для частиц вводится величина, называемая волновой функцией  (пси функция). Тогда квадрат модуля волновой функции, т.е. величина 2, будет пропорциональна числу частиц, которые будут обнаружены в данной точке. Если число микрочастиц мало, то трактовка приобретает вероятностный характер. В случае одной частицы 2 определяет вероятность её нахождения в некоторой точке пространства в данный момент времени. Итак, ещё раз отметим, что квадрат модуля волновой функции 2 характеризует вероятность обнаружения частицы в данной точке.

Принцип неопределённостей гейзенберга

Гейзенберг путём мысленного эксперимента открыл принцип неопределённости. Произведём мысленный эксперимент по нахождению электрона. Освещая электрон, можно оценить его положение с точностью x, не превышающей длины волны , вследствие дифракции света, т.е.  . Фотон, обладающий импульсом p = h/, передает электрону при соударении весь этот импульс или часть его. Следовательно, после соударения с электроном неопределённость его импульса р будет  h/. Произведение этих двух неопределённостей составляет xph. После детального анализа Гейзенберг получил более точное неравенство xpхh/(2), где pх — неопределённость проекции импульса на координатную ось х. Аналогичные соотношения имеют место для координатных осей у и z. Поэтому можно записать

(13)

Здесь py и pz — неопределённость проекции импульса на координатную ось y и z соответственно. Это и есть математическая формулировка соотношений неопределённостей Гейзенберга, которые справедливы не только для электронов, но и для любых объектов. Этот принцип утверждает, что нельзя измерить одновременно с абсолютной точностью положение и импульс объекта. Чем точнее измеряется положение (x  0), тем больше неопределённость в измерении импульса (p  ) и наоборот.

Для обычных размеров неопределённость не имела принципиального значения, так как постоянная Планка h очень мала. Однако когда переходили к описанию атома, размеры которого порядка 10–10м, то неопределённость нахождения координаты достигала размеров самого атома. Из этого вытекало, что понятие траектории движения электрона в атоме стало бессмысленным.

Корпускулярно-волновой дуализм частиц и соотношение неопределённости окончательно показали, что для описания атома и других микрообъектов должна быть создана новая теория, название которой уже было придумано — волновая или квантовая механика.