Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Асинхрон машины.docx
Скачиваний:
49
Добавлен:
08.05.2015
Размер:
4.67 Mб
Скачать

2.2. Рабочий процесс трехфазной асинхронной машины

АМ можно рассматривать, как трансформатор, принимая в качестве первичной обмотки обмотку статора, а вторичной – обмотку ротора. Вторичная обмотка в общем случае вращается, следовательно, АМ можно рассматривать как трансформатор обобщенного типа, в котором преобразуется не только напряжение, тока и число фаз, но осуществляется и преобразование рода энергии. При анализе АМ все величины будем считать синусоидальными функциями времени или пространства, т.е. будем рассматривать первую гармонику.

      1. Уравнения напряжений обмоток статора и ротора

При подключении трехфазной обмотки АМ к сети с напряжением , в обмотках статора и ротора возникают токи и . При этом обмотка статора создает МДС с амплитудойF1 и вращающейся с частотой . Токи обмотки ротора создают МДС, первая гармоника которой имеет амплитуду . Как будет показано далее, МДС роторавращается с той же частотой вращения и в ту же сторону что и, следовательно, эти МДС неподвижны относительно друг друга. Совместным действиям этих МДС создается результирующее поле, которое соответствует основной поток. Он наводит в обмотках статора и ротора ЭДС

Здесь – обмоточный коэффициент;– число витков фазной обмотки статора,– обмоточный коэффициент и число витков фазной обмотки ротора, Ф – основной поток;– частота питающей сети;– частота ЭДС в роторе.

При определении следует иметь ввиду, что ротор и поле перемещаются относительно друг друга с частотой скольжения и. Тогда ЭДС вращающегося ротора можно записать в виде

,

где – ЭДС неподвижного ротора.

Кроме основного потока, обмотки статора и ротора сцепляются с потоками рассеяния, и (рис. 2.2). Они наводят в обмотках статора и ротора ЭДС рассеяния и. При этом индуктивные сопротивления рассеяния статора и вращающегося ротора

;

, где – индуктивное сопротивление неподвижного ротора,.

Если далее учесть наличие активных сопротивлений обмоток статора и ротора, то уравнения напряжения для этих обмоток по аналогии с трансформатором запишутся таким образом:

,

.

При неподвижном роторе уравнение напряжения обмотки ротора будет

,

где – полное сопротивление неподвижного ротора.

Это уравнение аналогично уравнению вторичной обмотки трансформатора при коротком замыкании. Следовательно, режим работы АМ при неподвижном роторе аналогичен режиму работы трансформатора при коротком замыкании. С целью ограничения в этом случае токов АМ номинальными значениями к обмотке статора следует подводить понижение напряжение .

Если разомкнуть обмотку ротора, что практически осуществимо в АМ с фазным ротором, то получим режим АМ аналогичный режиму холостого хода трансформатора. Уравнение напряженной обмотки статора в этом случае приобретает вид , где – ток холостого хода.

Ток холостого хода АМ больше тока холостого хода трансформатора и составляет . У трансформатора. Увеличение тока холостого хода АМ связано с наличием воздушного зазора.

2.2.2. Частота вращения мдс ротора

При подключении в общем случае многофазной обмотки статора к сети она создает МДС обмотки статора, первая гармоника которой имеет амплитуду F1 . Приэтом МДС обмотки ротора с амплитудой первой гармоники F2 вращается относительно ротора с частотой, определяемой частотой тока в роторе. Так как частота ЭДС и тока в роторе согласно предыдущему , то скорость вращения МДС ротораF2 относительно самого ротора будет

.

Далее учтем, что при скольжении частота вращения ротора. Тогда частота вращения МДС ротора в пространстве (относительно неподвижного статора)

.

Таким образом, первая гармоника МДС ротора вращается в пространстве с той же частотой вращения, что и МДС статора, т.е. они неподвижны относительно друг друга и образуют результирующее вращающееся поле. Результирующая МДС будет. Здесь пространственные векторы заменены временными векторами, так как пространственный сдвиг между векторами соответствует временному сдвигу токов, создающих эти МДС.