Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть 1.doc
Скачиваний:
40
Добавлен:
13.04.2015
Размер:
2.35 Mб
Скачать

1.2. Закон Ома для участка цепи с эдс

На практике часто встречается задача, когда требуется определить ток в некоторой ветви при известных ее параметрах и потенциалах ее зажимов.

Пусть в схеме на рис. 1.8, а заданы R, E, a, b, и требуется определить ток.

Рис. 1.8. Варианты ветви с ЭДС

Между R и E отметим промежуточную точку с и выразим ее потенциал через потенциалы точек а и b.

Так как в резисторе ток протекает слева направо, то потенциал точки а выше потенциала точки с на величину падения напряжения в активном сопротивлении:

a = с + IR. (1.4)

Точка b находится на положительном полюсе источника, а с – на отрицательном. Поэтому

b = с + E. (1.5)

Беря разность левых и правых частей выражений (1.4) и (1.5), получим

ab = IR – Е,

откуда

.

Для цепи на рис. 1.8, б после аналогичных рассуждений будем иметь

I = (ab – E) G.

В двух последних формулах ЭДС записывается с плюсом, если ее направление на схеме совпадает с направлением тока, и с минусом – в противоположном случае.

1.3. Расчет сложных электрических цепей постоянного тока

1.3.1. Метод уравнений Кирхгофа

Этот метод сводится к решению системы уравнений, количество которых равно числу неизвестных токов (числу ветвей). Покажем его применение на примере схемы, изображенной на рис. 1.9.

Рис. 1.9. Сложная электрическая цепь

Первый закон Кирхгофа: в узле электрической цепи алгебраическая сумма токов равна нулю.

Произвольно задавшись направлениями токов в ветвях и принимая токи, подтекающие к узлу, положительными, а оттекающие от узла – отрицательными, записываем:

узел а:

узел b:

узел с:

(1.6)

Число независимых уравнений в первом законе Кирхгофа – на единицу меньше числа узлов, поэтому для последнего узла d уравнение не пишем.

В заданной схеме семь ветвей, семь неизвестных токов. Система (1.6) содержит только три уравнения. Недостающие четыре записываем по второму закону Кирхгофа.

Второй закон Кирхгофа: в замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех сопротивлениях контура.

Число уравнений, составляемых по этому закону, равно числу взаимно независимых контуров. При рассмотрении схемы каждый последующий контур является независимым относительно предыдущих, если он отличается от них хотя бы одной новой ветвью. В заданной схеме таких контуров четыре. Они отмечены пронумерованными дугообразными стрелками. Любой другой контур новых ветвей не содержит, поэтому не является независимым. Дугообразные стрелки показывают произвольно выбранные направления обхода контуров. Если направления ЭДС и токов совпадают с направлением обхода контура, то они записываются с плюсом, если не совпадают – то с минусом.

контур 1:

контур 2:

контур 3:

контур 4:

(1.7)

Системы (1.6) и (1.7) дают достаточное количество уравнений для отыскания всех неизвестных токов.

1.3.2. Метод узловых потенциалов

Уравнения, составляемые по этому методу, называются узловыми уравнениями. В качестве неизвестных они содержат потенциалы узлов, причем один из них задается заранее – обычно принимается равным нулю. Пусть таким узлом будет узел d: d = 0. Равенство нулю какой-то точки схемы обычно показывается как ее заземление.

Запишем для каждой ветви выражение закона Ома:

(1.8)

Подставляя формулы (1.8) в систему (1.6) после несложных преобразований получаем следующие уравнения, количество которых на единицу меньше числа узлов:

(1.9)

При решении практических задач указанный вывод не делают, а узловые уравнения записывают сразу, пользуясь следующим правилом.

Потенциал узла, для которого составляется уравнение (например, в первом уравнении последней системы – это узел а), умножается на сумму проводимостей ветвей, присоединенных к этому узлу: а (G1+G2+G3).Это произведение записывается в левой части уравнения со знаком плюс. Потенциал каждого соседнего узла (b и с) умножается на проводимости ветвей, лежащих между этим (соседним) узлом и узлом, для которого составляется уравнение.

Эти произведения b (G1 + G2) и сG3 записываются со знаком минус. В правой части уравнения стоит алгебраическая сумма произведений ЭДС на проводимости тех ветвей, которые присоединены к рассматриваемому узлу: E1G1, E2G2 и E3G3. Эти произведения записываются с плюсом, если ЭДС направлены к узлу, и с минусом, если от узла.

Найдя из (1.9) потенциалы узлов и подставляя их в (1.8), определяем токи ветвей.