Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект_лекций-1(ТЭМС).DOC
Скачиваний:
113
Добавлен:
29.03.2015
Размер:
10.34 Mб
Скачать

Реверсирование двигателя независимого возбуждения и механические характеристики для прямого и обратного напрявления вращения.

Для изменения направления вращения ДНВ нужно изменить направление действия момента, чего можно достичь изменением направления IЯили Ф, как следует из выражения:

.

Обычно это осуществляется изменением направленияIЯ, т.к. изменение направления Ф сильно затянуло бы процесс реверса из-за большой индуктивности обмотки возбуждения. Кроме того, в ней при ее отключении и быстром исчезновении Ф может навестись большая ЭДС самоиндукции, которая может вызвать пробой изоляции.

Схема реверса двигателя изображена на рис.

Всоответствии с 2-мя направлениями вращения имеют место 2-семейства механических характеристик. Для положительного направления вращения одно семейство пересекается в точке0, а для противоположного направления вращения – в точке -0.Уравнение механической характеристики для обратного направления вращения имеет вид:

.

Эта форма уравнения более удобна при рассмотрении режимов работы, отображенных во II, III, иIVквадрантах.

Тормозные режимы двигателя независимого и параллельного возбуждения.

Процессы торможения для значительного числа электроприводов являются очень ответственными, т.к. нечеткая работа, а тем более отказ в работе тормозного устройства, могут привести к серьезным авариям. Почти во всех рабочих механизмах с электроприводом используется электрическое торможение. Возможны следующие тормозные режимы электродвигателей:

  1. Генераторное с рекуперацией энергии в сеть;

  2. Торможение противовключением;

  3. Электродинамическое, называемое обычно просто динамическим, торможение.

Все тормозные режимы являются генераторными.

Генераторное торможение с рекуперацией (отдачей) энергии в сеть.

Переход двигателя в тормозной режим с отдачей энергии в сеть будет иметь место тогда, когда скорость двигателя будет больше скорости идеального холостого хода0. В этом случае ЭДС двигателя становится больше приложенного напряженияU. Ток якоря

при этом меняет направление. Такой режим имеет место при активном моменте сопротивления, например, при спуске груза, когда момент двигателя действует в направлении спуска груза. Под действием момента двигателя и исполнительного механизма система будет ускоряться. При этом противо ЭДС двигателя начнет расти, а ток падать. По достижении якорем скорости=0, ЭДС станет равной напряжениюUсети и машина не будет потреблять тока. Дальнейшее повышение скорости под влиянием движущего момента исполнительного механизма сделает ЭДС двигателя по абсолютной величине больше напряжение сети и двигатель, перейдя в генераторный режим, будет отдавать энергию в сеть, поскольку токIяизменит направление на противоположное. Момент, развиваемый при этом двигателем, будет тормозным. Двигатель превращается в генератор, преобразующий механическую энергию, подводимую к валу со стороны рабочей машины, в электрическую. Как только растущий тормозной момент двигателя станет равным движущему моменту Мс, создаваемому рабочей машиной, наступит установившийся режим спуска с постоянной скоростью.

Т.к. переход из двигательного в тормозной режим произошел без изменения параметров двигателя и схемы его включения в сеть, уравнение механической характеристики остается прежним, так же, как и жесткость характеристики. Графически механические характеристики для режима рекуперации энергии в сеть являются естественными продолжением характеристик двигательного режима в область IIквадранта (см. рис.).

Увеличение сопротивления цепи якоря увеличивает крутизну механической характеристики. При этом то же значение тормозного момента получается при большей скорости. Практически этот способ электрического торможения применяется при спуске тяжелых грузов со скоростью, превышающей скорость0, как показано на следующем рис.

Характеристика двигателя при его разгоне (он включается в направлении спуска груза) пойдет из IIIквадранта вIV. После достижения скорости -0система будет разгоняться менее интенсивно, т.к. знак момента двигателя меняется на обратный. При некоторой скорости наступит равновесие моментов Мдвс. Груз будет спускаться с постоянной скоростьюУ.

Режим рекуперативного торможения возможен и при реактивном моменте сопротивления. Если двигатель, работающий, например, при номинальном напряжении, мгновенно переключить на пониженное напряжение (что возможно в системах ГД, ТП-Д), то в 1-й момент в силу инерционности скорость мгновенно не изменится, а двигатель окажется работающим на искусственной характеристике, соответствующей пониженному напряжению (см. рис.) в т.2 в генераторном режиме, развивая тормозной момент. Скорость, так же и тормозной момент, начнут уменьшаться, причем до т. А торможение сопровождается отдачей энергии в сеть, а с т. А до новой установившейся скорости2в т.2, начнется замедление с потреблением энергии из сети.

Режим рекуперативного торможения можно получить при реактивном Мстакже путем быстрого изменения магнитного потока возбуждения. Если двигатель работал с ослабленным потоком Ф<Фн(см. рис.), то после увеличения потока, например, до Фнв 1-й момент скорость двигателя не изменится, но ЭДС возрастет согласно выражениюи станет большеUc. Ток изменит направление на противоположное, момент машины станет тормозным. Двигатель с т.2 начнет тормозится сначала с отдачей энергии в сеть,(до т. А), а затем с потреблением энергии из сети. В т.3 М станет равным Мси наступит установившийся режим работы со скоростью, соответствующей новому значению магнитного потока.

Генераторное торможение с отдачей энергии в сеть экономично, т.к. сопровождается отдачей энергии в сеть. Мощность, отдаваемая в сеть , гдеRД– добавочное сопротивление, которое в общем случае может иметься. КПД машины в этом режиме