Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник физиологии Косицкого / 004 Возбудимые ткани.doc
Скачиваний:
285
Добавлен:
25.03.2015
Размер:
19.39 Mб
Скачать

Двигательные единицы

Чтобы познакомиться с тем, как функционирует мышца в условиях естественной деятельности организма, необходимо остановиться на строении и особенностях иннерва­ции скелетной мышцы двигательным нервом.

Рис. 33. Электрическая активность отдельной моторной единицы (а) и целой мышцы (б) у человека (по Ф. Бухталю).

Каждое двигательное нервное волокно является отростком нервной клетки —мото­нейрона, расположенного в переднем роге спинного мозга или в двигательном ядре черепного нерва. В мышце двигательное во­локно ветвится и иннервирует не одно, а целую группу мышечных волокон. Мотоней­рон вместе с группой иннервируемых им мышечных волокон называется двигатель­ной единицей.

Среднее количество мышечных волокон, входящих в состав двигательной единицы, в разных мышцах варьирует в широких пре­делах. Так, у человека в некоторых мышцах глазного яблока двигательные единицы со­держат в среднем менее 10 мышечных воло­кон, в отдельных мышцах пальцев, руки — 10—25. В отличие от этого в большинстве мышц туловища и конечностей на одно двигательное волокно приходится в среднем сотни мышечных волокон, а в камбаловидной мышце — 2000.

Когда по двигательному волокну к мышце приходит потенциал действия, мышечные волокна, входящие в одну двигательную единицу, возбуждаются почти одновременно. Возникающий при этом суммарный потенциал действия мышечных волокон двигательной единицы может быть зарегистрирован вколотым в мышцу электродом с малой отводящей поверхностью. Поскольку мотонейрон при естественном сокращении мышцы разря­жается ритмически, электрическая активность двигательной единицы имеет в записи вид частокола (рис. 33). У здорового человека в расслабленной мышце (т.е. в состоянии полного покоя) электрическая активность в мышце почти отсутствует. При небольшом напряжении мышцы, например, связанном с поддержанием позы, двигательные единицы разряжаются с частотой 5—10 импульсов в секунду (имп/с), при увеличении силы сокра­щения частота повышается до 20—30, лишь при максимальном напряжении мышцы она может достигать 50 имп/с или несколько более. Исследование частоты разрядов двига­тельных единиц позволило установить, что в естественных условиях сокращения мышц мотонейроны разряжаются со сравнительно низкой частотой. Более высокие частоты зарегистрированы только при исследовании двигательных единиц мышц глазного яблока (150 имп/с и более).

Функциональная дифференциация двигательных единиц

В скелетных мышцах теплокровных животных и человека различают быстрые и мед­ленные двигательные единицы, состоящие соответственно из быстрых и медленных мышечных волокон. Длительность сокращения медленных двигательных единиц может быть 100 мс и более, быстрых —10—30 мс. Существуют мышцы, состоящие преимуще­ственно из быстрых двигательных единиц (например, мышцы глазного яблока), и мышцы, в которых преобладают медленные двигательные единицы (например, камбало-видная мышца). Такие мышцы часто называют соответственно быстрыми и медленными. Большинство мышц смешанные, состоят как из быстрых, так и из медленных двигатель­ных единиц, а также переходных форм между ними.

Со скоростью сокращения мышечных волокон двигательной единицы связано много других ее свойств и прежде всего, очевидно, то, что от скорости сокращения зависит суммация, т. е. та частота возбуждения, при которой наступает гладкий тетанус. В дви­гательных единицах медленной камбаловидной мышцы гладкий тетанус наступает уже при частоте разряда около 10—15 в секунду, в быстрых двигательных единицах мышц конечностей — только при частоте около 50 в секунду. В самых быстрых глазных мышцах гладкий тетанус можно наблюдать при еще больших частотах.

Сопоставление частоты разрядов двигательных единиц с частотой, при которой может образоваться гладкий тетанус, позволяет сделать вывод, что в естественных усло­виях гладкий тетанус может наблюдаться только при очень высокой частоте. Обычным режимом естественного сокращения является зубчатый тетанус или даже ряд после­довательных одиночных сокращений двигательной единицы. Тем не менее это не отра­жается на сокращении целой мышцы; оно, как правило, бывает слитным, напоминающим гладкий тетанус. Причина этого—асинхронность разрядов мотонейронов, а следова­тельно, и мышечной части двигательных единиц. При отведении игольчатым электродом потенциалов действия одновременно нескольких активных двигательных единиц видна асинхронность их импульсации. В случае электрической активности целой мышцы сложе­ние (интерференция) потенциалов действия многих двигательных единиц дает сложную картину колебаний потенциала, в которой уже не удается различать потенциал каждой из них, а общая частота колебаний существенно превышает частоту разрядов каждой из активных двигательных единиц.

Скорость сокращения двигательных единиц коррелирует и с другими их свойствами. Медленные двигательные единицы, как правило, содержат меньше мышечных волокон и, следовательно, при сокращении развивают меньшую силу. Количество мышечных воло­кон и развиваемая ими суммарная сила в двигательных единицах одной мышцы могут различаться более чем на порядок. Не менее важно другое различие медленных и быстрых двигательных единиц — устойчивость к утомлению. Медленные двигательные единицы могут работать без утомления гораздо дольше, чем быстрые, что объясняется особен­ностями их обмена.

Со свойствами мышечных волокон двигательной единицы коррелируют и свойства иннервирующего ее мотонейрона: при естественном напряжении мышцы мотонейроны медленных двигательных единиц обычно оказываются более низкопороговыми, т. е. во­влекаются в возбуждение раньше. Разница в возбудимости мотонейронов позволяет нерв­ной системе дозировать силу сокращения, вовлекая в возбуждения меньшее или большее количество двигательных единиц мышцы. При длительных, но обычно слабых тонических напряжениях, связанных, например, с поддержанием позы, активируются только низко­пороговые медленные, устойчивые к утомлению двигательные единицы. Если необходимо осуществить сильное фазное напряжение, в возбуждение вовлекаются высокопороговые, быстрые сильные двигательные единицы.

Рассмотренные двигательные единицы теплокровных животных и человека отно­сятся к классу так называемых фазных двигательных единиц. У амфибий и рептилий, а также в некоторых (немногих)' мышцах теплокровных (наружные мышцы глаза) содер­жатся особые тонические двигательные единицы — мышечные волокна, которые суще­ственно отличаются от волокон фазных единиц. Возбуждение тонических волокон не подчиняется закону «все или ничего» и имеет характер локального ответа, поэтому ограничивается областью нервно-мышечного окончания или тем участком, к которому непосредственно приложено электрическое или химическое раздражение. Охват возбуж­дением всего волокна возможен потому, что на каждом мышечном волокне имеется не одно, а множество нервных окончаний. Одновременное поступление к этим окончаниям нервного импульса вызывает сокращение всего волокна. Это сокращение существенно медленнее, чем сокращение фазных мышечных волокон.

Регистрация электрической активности двигательных единиц у человека показала, что в естественных условиях мышцы редко бывают полностью расслабленными. Обычно в них наблюдается небольшая, так называемая позная, активность, или позный тонус; при этом низкопороговые медленные двигательные единицы разряжаются с небольшой частотой.

Тонус и особенно его нарушения при ряде заболеваний нервной системы связаны с изменением состояния рефлекторных механизмов, в частности рефлексов с проприо-рецепторов мышц, повышение возбудимости которых ведет к повышению тонуса.